
First Java Program - Output to the Screen

These notes are written assuming that the reader has never programmed in

Java, but has programmed in another language in the past. In any language,

one of the first tasks we learn is outputting some text to the screen. Unlike

other languages where there's very little extra syntactic sugar (extra stuff

you have to do to follow the rules of the language), Java has a ton of

syntactic sugar in comparison. It will take a few days to learn why it's all

there, but for now, there's going to be quite a bit that you just copy down

without fully understanding what it's doing. Here is a Java program that

prints out "Hello World!" (no quotes) to the screen:

// Hello.java
// My first Java program prints a greeting to the screen!

public class Hello { // line 4
 public static void main(String args[]) { // line 5

 // Prints output // line 7
 System.out.println("Hello World!"); // line 8
 } // line 9
} // line 10

All Java programs are in classes. The name of the file must be the same as

the public class defined in the file. Thus, this program above, which defines

the class Hello must be stored in a file called Hello.java. For now, lines 4, 5,

9 and 10 can all be copied, roughly as is (except for changing the class and

file name for different programs.)

The only line that actually does anything in this program is line 8. Java has a

predefined function that prints output to the screen. That function is called

println (there is another one called print that works similarly) but System.out

specifies where that output will go. All functions in Java (just like most

langauges) are specified with parentheses. So, after the function name, we'll

see an open parenthesis, possibly followed by some stuff, then followed by a

matching closed parenthesis. The end of each statement in Java must have a

semicolon. (This is similar to a period in English.) The println function takes

as input a String. The most simple string we can provide the function is a

string literal - a fixed string value. To denote a string literal, we use

matching double quotes. Everything inside the matching double quotes

represent the actual string, in this case, Hello World! Now, there are

exceptions to this. For example, what if we wanted to print a double quote?

If we just placed ", then the computer would think that we're ending our

string literal. For this reason there are a few special characters. If we want

the double quote to be part of our string literal, we write the two character

sequence, \". Anytime you see a backslash inside of a string literal, it does

NOT mean backslash. Rather, it's an indicator that the character to be

designated is a special character. Some of the special character codes (also

called escape sequences) are:

newline - \n

tab - \t

double quote - \"

backslash - \\

There are some others, but this is good for now. If you experiment with

using these, you'll see how they work. Also, the difference between print and

println is that println automatically adds a newline character ('\n') after

whatever the println statement outputs, whereas print doesn't. To see the

difference, consider these two segments of code (you can think of

substituting these in the program on the previous page for line 8):

Code Segment #1 Code Segment #2

--------------------- ---------------------
System.out.print("Hello "); System.out.println("Hello ");
System.out.println("World!"); System.out.println("World!");

The output for the two code segments are:

Code Segment #1 Output Code Segment #2 Output

------------------------------- -------------------------------
Hello World! Hello
 World!

For both code segments, if we were to add a third print, that string would

start printing on the following line in both. The key here is that in the second

segment, the println added a newline character after the space after the 'o'. In

the first code segment, this character wasn't added.

There are some other nuances about printing, but we'll handle these as they

come up.

Second Java Program

Now that you have mastered your first Java program, let’s move on to the

next one. In this lesson we will develop a couple of key tools that you will

use for the rest of the course : variables, output format, and how to read in

input from the user.

Variables

The first topic we will cover is the variable. In programming, variables act as

containers that can store different values. Take a look at the following

program, Circle.java:

// Circle.java
// My second Java program calculates the area of a circle :)

public class Circle {
 public static void main(String args[])
 {
 // Calculates the area of a circle with radius 10
 double radius, area;
 radius = 10;
 area = 3.14159*radius*radius;

 // Prints output
 System.out.print(“The area of a circle with radius “ +
radius);
 System.out.println(“ is “, + area);
 }
}

In this program, we used two variables – radius and area. First the variables

are declared, as in the following line:

double radius, area;

When declaring a variable, we must first tell the compiler what type of value

we are expecting it to store. In this case, our variables will store values of

type double. Variables also commonly store variables of type int (1, 22, -45),

char ('a', 'b', 'c'), string (“Java”, “BHCSI”), and boolean (true, false).

You’ll notice that I have declared more than one variable on the first line of

this program. Alternatively, this could also be written out as

double radius;
double area;

but we can save ourselves time and space by writing both declarations on

one line. As long as the variables you are declaring are of the same type

(double, int, char, etc.), this is permissible. The general syntax is as follows:

<type> <var1>, <var2>, ... , <varn>;

You list the type, followed by each variable separated by a comma. After the

last variable, you must have a semicolon to signify the end of the

declaration.

Although it is permissible to declare many variables on a single line, it is not

a good programming practice to stick every int variable you use in the same

declaration. The general rule of thumb is that you should have related

variables declared on a line together, but no more than about 5 or 6.

After the variables are declared, they can have values assigned to them. For

example:

radius = 10;

area = 3.14159*radius*radius;

Here, radius stores the value 10. That is, whenever the compiler sees the

variable radius, it replaces it with the value 10. So, by setting area equal to

3.14159*radius*radius, we are really setting it equal to 3.14159*10*10, or

314.159.

It seems redundant to declare a variable radius in this program. We could

simply combine the two lines

radius = 10;
area = 3.14159*radius*radius;

into one line as follows:

area = 3.14159*10*10;

However, when written out as a variable, it is easier to understand what is

happening in the program. Furthermore, once we learn to read input from the

user, we will need the variable radius to store the value entered by the user.

Also, it seems silly to write out the value of pi. What if we had a program

that used this value several times? It would be nice to be able to refer to this

value (which doesn’t change) in a symbolic manner, as we refer to variables.

In Java, a final variable declaration provides such a function. Here is how

we should change the initial code to use a final variable, or constant

definition:

final double pi = 3.14159;
double radius, area;
radius = 10;
area = pi*radius*radius;

When we use a final variable declaration, the programmer is not allowed to

change the value of the variable from that point on. Hence, the identifier pi,

in this case, really stands for a constant value. Here are two reasons to use

constants instead of integer literals:

1) An identifier gives a constant meaning. If you see the value 1 in a

program, it is difficult to decide its meaning. However, a constant named

h2odensity would be more clear.

2) If you happen to need to change the value of a constant when you run a

program, you need only change the value in one place, not every place you

actually used it. Also, if you just used literal values, it may be unclear which

ones to change. (Perhaps you should only change some of the 2’s to 4’s,

based on their function in the program.)

Output Formatting

Finally, we need a way to print out the information the program has

calculated. We can do this with print statements. In our first program, we

learned how to print out strings. But, in this program, we would like to print

out the value of a variable, area. Here is the general syntax of a print

statement:

System.out.println(<item1> + <item2> + ... + <itemn>);

Each item may either be a variable of a particular type or a literal value

Typically, the only type of literal value included in a print statement is a

string literal. A string literal always lies in between two double quote

marks(“ ”). Basically, if you print out a string literal, whatever is in between

the two quote marks gets printed out exactly as it appears. (There are a few

exceptions, which we will get to.)

This choice of syntax leads to the question: how does the computer

differentiate between the plus sign that means adding two numbers and the

plus sign that means concatenating two strings together? Here is the answer:

An expression, as we mentioned, is evaluated from left to right. Thus, the

first part of the expression that is evaluated is <item1> + <item2>. When

considering how a single plus operation is interpreted, the compiler checks

the types of each of the operands. If both are numeric (int, long, float or

double), then the resulting answer will also be numeric. However, if at least

one of the operands is a string, the operation performed is a string

concatenation, which also produces a string. So, you are guaranteed, if the

first item is a string, for the print statement to work as you wanted it to.

In certain cases, you will want to do arithmetic inside of a print statement.

Consider the following println statements:

System.out.println(“2 + 5 = “ + 2 + 5);
System.out.println(2 + 5 + “ = 2 + 5);
System.out.println(2+5);

The corresponding output from these three lines is:

2 + 5 = 25

7 = 2 + 5

7

(Note: The output does not print in bold. I am just doing that in the notes so

you can differentiate it as the output.)

In the first example, what happens is “2 + 5 = “ + 2 is interpreted as string

concatenation. Thus, this expression evaluates to the string “2 + 5 = 2”.

Now, the final operation that is executed is “2 + 5 = 2” + 5, which also

returns a string. In the second and third examples, the first plus operation is

interpreted as addition instead of string concatenation, explaining the

remaining output. But, it seems natural to write the print statement in the

form of the first one. To do this, a simple fix is to use an extra set of

parenthesis, as follows:

System.out.println(“2 + 5 = “ + (2 + 5));

The inner parenthesis give a higher order of operation to the second plus

sign, meaning that 2+5 gets executed first. Since both of these operands are

integers, an addition is performed. Thus, the output is as desired:

2 + 5 = 7

One of the things you will notice is that our program has one print statement

and one println statement. Here is the difference between the two:

Print statements work just like a typewriter. The output of successive print

statements goes from left to right, top to bottom. If you have a println

statement, after everything in the println statement is printed out, “the

cursor” advances to the left hand side of the next line, like a carriage return

on a typewriter. However, with a print statement, “the cursor” is left

directly to the right of the last character printed out. In our example, the

output of executing

System.out.print(“The area of a circle with radius “ + radius);
System.out.println(“ is “, + area);

is

The area of a circle with radius 10 is 314.159

Had both statements been printlns, the output would have been as follows,

The area of a circle with radius 10

 is 314.159

Finally, if both statements had been print statements, the output would have

all been on one line, but a subsequent print statement would have started on

the same line, directly to the right of 314.159.

Input

As we mentioned before, our program would be much more interesting

(okay, a little bit more interesting!) if we could ask the user to enter what the

radius of the circle was. We already know how to ask – just use a print

statement. In most languages, reading in input is perfectly analogous to

printing output. In Java, reading input used to be very complicated, but in

the new version of Java, 1.5, it is easier. First, you must declare a Scanner to

read from the keyboard as follows:

Scanner stdin = new Scanner(System.in);

In essence, stdin is a variable of type Scanner. You need a Scanner

variable to read in input from the keyboard. Here, we are telling the stdin

Scanner to get ready to read input from System.in, or the keyboard. Once

you have this declared, there are a few different methods you may use to

read in information from the user, depending on what type it is.

For example, if you know the user will be entering an integer, we can use the

following statement to take the user input from the keyboard and store it in

the variable num (assuming num is already declared):

num = stdin.nextInt();

Basically, the name of the method is nextInt. It is a method instead of a

variable because of the parentheses following it. What this method does is

read in the next Integer from the associated Scanner object (which, in this

case is reading from the keyboard). Then, the method returns this integer.

We then, take the returned integer and store it in num with the assignment

statement.

In a very similar manner, we can read a double from the keyboard into a

variable val as follows:

val = stdin.nextDouble();

To read in a String into the String variable name (assuming it’s already

declared), we do the following:

name = stdin.next();

In general, information entered by the user is read into and stored in some

variable declared in the program.

Using what we have learned in today’s lecture, we can improve our circle

program :

// Circle.java
// My improved second Java program calculates the area of a
circle :)

public class Circle {
 public static void main(String args[])
 {
 // Calculates the area of a circle using the radius

// from the user.
 Scanner stdin = new Scanner(System.in);
 final int pi = 3.14159;
 double radius, area;
 radius = stdin.nextDouble();
 area = pi*radius*radius;

 // Prints output.
 System.out.print(“The area of a circle with radius “ +
radius);
 System.out.println(“ is “, + area);
 }
}

Using the tools we have developed so far, we can write programs to prompt

the user for information, use that information for calculations, and print the

result of those calculations to the screen.

File Input

We can read from a file just as easily as the keyboard. In order to do this, we

must set up a Scanner to read from a file instead of the keyboard. Here is an

example that creates a Scanner fin to read from a file input.txt:

Scanner fin = new Scanner(new File("input.txt"));

Here instead of the Scanner constructor taking in System.in, it takes in a new

File object indicating the file from which the Scanner fin will read.

The key to understand here is that when we set this up, it's as if fin is a

bookmark to the file input.txt set to the beginning. Whenever we try to read

something from the file, such as this:

int num = fin.nextInt();

then, the next token in the file is read in as an integer and stored in num.

Subsequently, the "bookmark" fin in the file input.txt moves past the

number that was just read in.

When there are no more contents to be read from the file, we should close

the file with the following single statement:

fin.close();

If you try to read a token from a file and none exists, an exception will be

thrown and your program will crash.

In the following program, we read in two integers from the file input.txt and

print out the area of circles with those radii. It is assumed that the input file

is located in the same directory as the program – make sure the input.txt and

circle2.java files are in the same folder.

//Circle2.java
//The third Java program calculates the area of a circle with a
user-specified radius

public class Circle2 {
 public static void main(String args[])
 {

// Calculates the area of a circle using the radius
// from the user.

 Scanner fin = new Scanner(new File("input.txt"));
 final int pi = 3.14159;
 double radius, area;
 radius = fin.nextDouble();
 area = pi*radius*radius;

 // Prints output for first circle.
 System.out.print(“The area of circle 1 with radius “ +
radius);
 System.out.println(“ is “, + area);

// Gets the second radius and prints out the
// corresponding area.

 radius = fin.nextDouble();
 area = pi*radius*radius;
 System.out.print(“The area of circle 2 with radius “ +
radius);
 System.out.println(“ is “, + area);
 fin.close();

 }
}

