
Floodfill Algorithm

A floodfill is a name given to the following basic idea:

In a space (typically 2-D or 3-D) with a initial starting square,

fill in all the areas adjacent to that space with some value or

item, until some boundary is hit. As an example, imagine an

input 2-D array that shows the boundary of a lake (land is

designated with * characters.)

** *** *

* * *

* * *

* *

* * *

Now, imagine that you wanted to fill in a “lake” with the ~

character. We’d like to write a function that takes in one spot

in the lake (the coordinates to that spot in the grid), and fills

in each contiguous empty location with the ~ character. Our

final grid should look like:

~~*~~*

~~~~~~~*

~~~~~~~*

~~~~~~~~

~~~~~~~*

Of course, in this particular, example, we could just fill in all

spaces with ~ characters, but it’s easy to imagine a larger grid

where we just fill in this one lake and not other areas with

spaces.

Depending on how the floodfill should occur (do we just fill in

each square above, below, left and right, or do we ALSO fill

in diagonals to squares already filled), the basic idea behind a

recursive function that carries out this task is as follows (this

is just a very rough sketch in pseudocode:

public static void FloodFill(char

grid[][SIZE], int x, int y) {

 grid[x][y] = FILL_CHARACTER;

 for (each adjacent location i,j to x,y) {

 if (i,j is inbounds and not filled)

 FloodFill(grid, i, j);

}

When we actually write code for a floodfill, we may either

choose to use a loop to go through all adjacent locations, or

simply spell out the locations, one by one. If there are 8

locations, a loop is usually desirable. If there are 4 or fewer, it

might just make sense to write each recursive call out

separately.

Minesweeper - Recursive Clear

Minesweeper is the popular game included with Windows where the

player has to determine the location of hidden bombs in a rectangular

grid. Initially, each square on the grid is covered. When you uncover

a square, one of three things can happen:

1) A bomb is at that square and you blow up and lose.

2) A number appears, signifying the number of bombs in the adjacent

squares.

3) The square is empty, signifying that there are no adjacent bombs.

In the real minesweeper, when step 3 occurs, all of the adjacent

squares are automatically cleared for you, since it's obviously safe to

do so. And then, if any of those are clear, all of those adjacent squares

are cleared, etc.

Step 3 is recursive, since you apply the same set of steps to clear each

adjacent square to a square with a "0" in it.

I am going to simplify the code for this a bit so that we can focus on

the recursive part of it. (I will replace some code with comments that

simply signify what should be done in that portion of code.) The full

example is posted online under the Sample Programs. Comments

have been removed so the code takes up less space.

The key here is ONLY if we clear a square and find 0 bombs adjacent

to it do we make a recursive call. Furthermore, we make SEVERAL

recursive calls, potentially up to 8 of them.

final public static int[] DX = {-1,-1,-1,0,0,1,1,1};

final public static int[] DY = {-1,0,1,-1,1,-1,0,1};

public static boolean domove(int r, int c, char[][] grid) {

 // You hit a bomb, you die!

 if (grid[r][c] == '*')

 return false;

 // Change this square to show # of adjacent bombs.

 int ans = numBombsAdj(r,c,grid);

 grid[r][c] = (char)('0'+ans);

 // Recursively clear

 if (ans == 0) {

 for (int i=0; i<DX.length; i++)

 if (inbounds(r+DX[i],c+DY[i]) && grid[r+DX[i]][c+DY[i]] == '_')

 domove(r+DX[i], c+DY[i], grid);

 }

 return true;

}

In this code, the DX and DY arrays show all the valid

movements from one square to the next for the floodfill. To

utilize these parallel arrays, we loop through each possible

index into the direction arrays:

 for (i=0; i<DX.length; i++)

Basically, DX[i] and DY[i] represent the offsets for row and

column, respectively, for the ith direction.

Due to our if statement that checks for validity, there is no

problem in accidentally calling our function again with the

exact same row and column value. This call does nothing

because the if statement screens it out.

Thus, the following if statement is critical:

if (inbounds(r+DX[i],c+DY[i]) && grid[r+DX[i]][c+DY[i]] == '_')

The first clause in the if statement prevents array out of

bounds errors. The second clause in the if statement prevents

from clearing a square that was previously cleared. These two

checks MUST BE done in this order. If we tried to access the

array index but it to see if it was an underscore before

checking if it was inbounds, we would get an array out of

bounds error if that new index was out of bounds. (The

computer is smart enough to not check the second condition

if the first condition in an and expression is false. This is called

short-circuiting and we're taking advantage of it here in this

if statement.)

Only if these two tests are passed do we recursively clear the

square with the location

r + DX[i], c + DY[i]

In essence, we are performing a floodfill of all adjacent

squares with no adjacent bombs, starting from the initial

chosen location by the user.

