
Recursion in C++ 

 

While recursion doesn’t necessarily introduce any new programming language syntax, it’s a 

difficult topic and often given multiple weeks of attention in collegiate computer science courses. 

There’s no way anyone will master recursion with this one lecture, but the goal of this lecture is to 

give students enough background information for the brute force lecture that follows, since brute 

force (combinations, permutations) is a common technique used in programming competitions. 

By definition, a recursive function is a function that sometimes calls itself. The reason for 

“sometimes” is if a recursive function always called itself, there would be no end to the chain of 

function calls. Perhaps the easiest way to see recursion is via a short example.  

 

First Example: Factorial Function 

One of the most common examples used in programming courses is the factorial function (“n!” is 

read as “n factorial”): 

 

n! = 1 x 2 x 3 x … x (n – 1) x n 

If we look at this definition carefully, we could write it as follows (so long as n is positive and we 

define 0! = 1): 

n! = (n – 1)! x n 

Correspondingly, here is the code for the factorial function in C++. (Note: ll is typdefed as for long 

long in the example code.) 

ll fact(int n) { 

    if (n == 0) return 1; 

    return n*fact(n-1); 

} 

 

For example, when we call fact(3), it will call fact(2), which calls fact(1), which calls fact(0). At 

that moment in time, the call stack looks like this: 

 

fact(0) 

fact(1) 

fact(2) 

fact(3) 

main 

------------- 

 

When fact(0) is called, it returns 1 back to fact(1), which called it. This allows fact(1) to complete 

and return 1 to fact(2). Then fact(2) completes and returns 2 to fact(3). Finally, fact(3) can then 

complete, returning 3*2 = 6 to main. (In this example we assumed that fact(3) was directly called 

from main.) 

 



 

Here is a picture of the process over time as each recursive call finishes: 

 

fact(1) → returns 1 x 1 (from fact(0)) 

fact(2) → returns 2 x 1 (from fact(1)) 

fact(3) → returns 3 x 2 (from fact(2)) 

There are two keys to this code working: 

 

1. Breaking down the original problem into subproblems such that one (or more) of the 

subproblems is a problem of the exact same nature, but smaller. 

 

2. Figuring out a case that is so small there is no longer any need to break it into subproblems. It 

can be solved very easily on its own. This is called the base case. 

 

In this case, the factorial function was fairly straightforward to break down, but part of what makes 

recursion difficult is figuring out how to state a problem so that it can be solved with subproblems 

of the exact same nature. 

 

Base cases are usually fairly easy to figure out. Think about small enough cases and try to just 

directly solve them. Typically, base cases come first in the layout of a recursive function because 

these are the cases when no recursive call (call to the same function) are made, so we typically 

want to get these out of the way before we try to call the function recursively. 

 

Other Mathematical Examples: Triangle Numbers, Power 

The nth Triangle Number is the sum of the first n positive integers. Accordingly, the recursive 

function looks very much like the factorial function: 

 
ll trinum(int n) { 

    if (n == 0) return 0; 

    return n + trinum(n-1); 

} 

 

Here we see that the additive identity is 0 (not 1) and of course, in the return step, we are 

performing addition instead of multiplication. 

 

We can also think of exponentiation recursively. Utilizing a similar breakdown to the factorial 

function, we find that 

 

be = b x be-1, so long as e > 0. If e is 0, then the result is 1 (multiplicative identity). 

 

Utilizing this mathematical breakdown, we translate to get the following code: 

 
ll mypow(ll base, int exp) { 

    if (exp == 0) return 1; 

    return base*mypow(base, exp-1); 

} 

 



One thing to notice here is that each of these functions isn’t necessarily all that efficient. Each can 

easily be written with a for loop and with a little math, we can rewrite the second one without 

recursion or loops; just a single return statement that is a simple function in terms of n. However, 

the purpose of these examples is to teach the technique of recursion. Now, we’ll use the last 

example to build up a more efficient example which shows the power of recursion. 

Fast Modular Exponentiation 

A common task in competitive programming is modular exponentiation. Given a base, b, an 

exponent, e, and a modulus value, m, compute the remainder when be is divided by m. One key 

rule with making this calculation is that you can do intermediate modulus steps as much as you 

want without affecting the answer. So for example, b3 % m is the same as ((b2 % m)*b)%m. The 

latter seems like more work, but in reality it’s less work!!! The reason is the sheer size of a number 

with a large exponent may be many digits long, but we are guaranteed that any number mod m is 

less than m. Thus, if we always do an intermediate modulus operation after every multiply, we’ll 

never have an intermediate number greater than m2. Thus, even if be would be astronomical, we 

can calculate be % m without ever storing a number greater than m2. Once we understand this idea, 

we can come up with much more efficient code to calculate be % m than the previous example. 

 

We need a new recursive breakdown to the function. Our old one: 

be = b x be-1 

is slow because it requires at total of e recursive calls in sequence, similar to a for loop that runs e 

times. 

But we can utilize one key idea here. If e is even, then we can rewrite our formula differently: 

be = (be/2) x (be/2) 

Now, add the mod in there and we have: 

be % m = ((be/2 % m) x (be/2 % m)) % m 

If the exponent is odd, we can use our previous breakdown. But, if you think about, it, in one 

recursive call, if the exponent is odd, then in the next one, it will be even.  

  



Here’s the code (we assume mod > 1): 

ll fastmodpow(ll base, ll exp, ll mod) { 

 

    if (exp == 0) return 1; 

 

    if (exp%2 == 0) { 

        ll tmp = fastmodpow(base, exp/2, mod); 

        return (tmp*tmp)%mod; 

    } 

 

    return (base*fastmodpow(base, exp-1, mod))%mod; 

} 

 

The beauty of this code is that once we know the answer to be/2 % m, we don’t have to recalculate 

it a second time (there’s only one recursive call in the second if). We reuse that answer, multiply it 

by itself and mod, in some sense, saving a long loop to recalculate that same value. 

Even with an exponent as large as 109, this code is guaranteed not to make more than about 60 

recursive calls. This is astonishingly better than the 109 operations the old recursive code (or for 

loop) would do. 

Towers of Hanoi 

A famous puzzle involves three towers with a series of disks (largest on the bottom, smallest on 

the top), stacked on a single tower. The goal is to move all of the disks from the original tower to 

one of the other towers. The restrictions are that only one disk can be moved at a time, and at no 

point can a larger disk be placed on a smaller disk. 

 

 

 
 

For this picture, imagine that we label the towers 1, 2 and 3 from left to right. (The disks are labeled 

from 1 to n, where 1 is the smallest and n is the largest.) Let’s say we want to move all the n disks 

from tower startT to tower endT in general and that the function to solve this task (let’s just say 

the function prints out all the moves to solve the puzzle), has the following prototype: 

void towers(int n, int startT, int endT); 



First of all, we know that at some point, we must move the bottom disk, disk n. A good question 

to ask is, when will be able to do so. (We definitely can’t at the beginning of the puzzle!) 

In order for disk n to move, disks 1 through n – 1 must be moved to a different tower and disk 5 

must be alone on startT. (This is because it’s bigger than all of the other disks and it can’t ever be 

anything but the bottom disk of any tower, and we can only ever move the top disk on any tower.) 

BUT…if disks 1 through n – 1 occupy BOTH of the other towers, then disk n can NOT move 

because disk n MUST move from one empty tower to another empty tower. 

It stands to reason that when we move disk n, we must have its tower with nothing else on it, AND 

the tower it’s moving to have nothing on it. The ONLY way to create this situation is to move ALL 

the disks 1 – (n-1) from tower startT to the “other” tower (the one that is neither startT nor endT). 

But, if you think about it, this is really a smaller problem of the exact same nature – RECURSION! 

So, now we have a algorithmic sketch of our partial solution: 

towers(int n, int startT, int endT) 

Step 1. towers(n-1, startT, “other tower”) 

Step 2. Move disk n from tower startT to tower endT. 

 

Thus, our picture now looks something like this: 

               1 

               2 

              … 

                                           n          n-1 

__________  _________  _________ 

Start Tower  End Tower  Other Tower 

 

At this point it should be clear that all we have left to do is recursively move the first n – 1 disks 

from “Other Tower” to “End Tower”, so that our complete algorithm is: 

towers(int n, int startT, int endT) 

Step 1. towers(n-1, startT, “other tower”) 

Step 2. Move disk n from tower startT to tower endT. 

Step 3. towers(n-1, “other tower”, endT) 

 

An awful lot of what’s above looks like code except for step 2 and a reference to “other tower.” To 

calculate “other tower”, note that the sum of the three tower numbers is 1 + 2 + 3 = 6 and that we 

can calculate the number of the other tower like so: 

int otherT = 6 – startT – endT; 

Finally, for step 2, we’ll just do a print statement (cout). Here’s the function: 

 

 



void towers(int n, int startT, int endT) { 

 

    // No work to be done. 

    if (n == 0) return; 

 

    // Calculate the number of the third tower. 

    int otherT = 6 - startT - endT; 

 

    // Move the first n-1 disks out of the way. 

    towers(n-1, startT, otherT); 

 

    // Move the bottom disk to its end spot. 

    cout << "Move disk " << n << " from tower " << startT << " 

to tower " << endT << endl; 

 

    // Move the first n-1 disks to their final spot. 

    towers(n-1, otherT, endT); 

 

} 

 

The only addition to this code is the base case (n == 0), where no work has to be done, so we 

simply return before we do any recursion here. 

Binary Search 

Note that C++ has a built in binary search which will return true or false indicating if an element 

exists in a sorted vector or not. But, binary search is such an important technique and so adaptable 

and applicable that it’s best to learn how to do it from scratch. This algorithm can be written 

iteratively equally easily as recursively. 

The problem to be solved is as follows: given a sorted vector and a value to search for, determine 

if that value is in the array or not. Here is an example: 

Vector: 2, 3,  6,  22,  39,  41, 52 

Search Value: 41 

One way to find the value is to do a for loop through the data. But, it seems like a waste of time 

because we are not using the fact the array is sorted. (If the array were much better, it would be an 

even bigger time waste!) The key idea is that if we look halfway through the array (in this case 

index 3), and we compare the value we’re looking for (in this case comparing 41 to 22), then we 

can immediately find out if we should look to the right or the left. (There will never be a reason to 

look to both sides!) It makes sense for us to minimize the maximum size of right or left (the 

maximum range of our next search). We can do this splitting the sides roughly in half. 

In short, a search for 41 in the array from index 0 to index 7 has resulted in a new recursive search 

for 41 in the array from index 4 to index 7, since we now have proof that index 3 is too small. 

 



Thus, when making a comparison to the middle element, one of three things will happen: 

1. The value is on the left side, so we must recursively search for it from the left index to the middle 

index minus 1. 

2. The value is on the right side, so we must recursively search for it from the middle index plus 1 

to the right index. 

3. The value is where we looked, we can return true and do no further work! 

 

The final consideration is that our search space is empty (for example we want to find the item in 

the subarray starting at index 7 and ending at index 6.) In this case, we just return false. 

 

The final code looks like this: 

 

bool binarysearch(const vector<int>& items, int value, int low, 

int high) { 

 

    // No search range we return false. 

    if (low>high) return false; 

 

    // This is halfway between low and high. 

    int mid = (low+high)/2; 

 

    // Looking for something small, go left. 

    if (value < items[mid]) 

        return binarysearch(items, value, low, mid-1); 

 

    // Looking for something big, go right. 

    else if (value > items[mid]) 

        return binarysearch(items, value, mid+1, high); 

 

    // We found it! 

    else 

        return true; 

} 

 

  



Floodfill 

The original idea and name “floodfill” comes from the Microsoft Paint paintbucket tool that fills 

an enclosed area with a color. The basic idea is that we’re on some 2 dimensional space and at one 

point (or grid square), a “flood” (or leak) emanates from it. It goes in “all directions” and only 

stops when there’s a boundary set up to block it. Here is an example where the boundary squares 

are marked as ‘*’ and the location where the flood starts is marked by ‘~’: 

 
************** 

** ~***  *** * 

*    *   *   * 

*    *   ***** 

*        *   * 

*    *   *   * 

************** 

*   *****    * 

*    *       * 

*   *        * 

************** 

 

After executing the floodfill, we should have this: 

************** 

**~~***~~*** * 

*~~~~*~~~*   * 

*~~~~*~~~***** 

*~~~~~~~~*   * 

*~~~~*~~~*   * 

************** 

*   *****    * 

*    *       * 

*   *        * 

************** 

For this example, we assume that the water (‘~’) only flows up, down, left and right. Let’s think 

about how to solve this. Imagine that our flood starts at coordinate (x, y). Then, in some sense, we 

want to recursively flood locations of the form: 

(x + dx, y + dy) 

where (dx, dy) represents a valid direction the water can move “in one step.” The exceptions would 

be if 

(a) The new location is off our grid 

(b) The new location is a boundary square which stops the flood 

(c) The new location was previously flooded. 

If location (x, y) recursively floods location (x + dx, y + dy) and then location (x + dx, y + dy) 

follows this by recursively flooding location (x, y), then this chain will never stop (infinite 

recursion). So, one of our base cases (OR conditions when we never call the recursion) has to be 

based on whether or not we previously flooded that location. 



DR/DC or DX/DY arrays 

There are MANY competitive programming problems on grids, and most of them describe some 

sort of valid “movement.” To make code for grids more concise and easier to debug, it’s critical to 

use DR/DC arrays which store the definition of movement for the particular problem at hand. (In 

Counting Stars, which we’ll see in a moment, we can move up, down, left and right.) Shockingly, 

I’ve seen DR/DC arrays of size 2, 4, 6 and 8, so quite a few varieties and often times they are just 

problem specific. The good news is that the DR/DC framework allows us to handle all cases in a 

near identical way while saving quite a few lines of code compared to the alternative. Here’s valid 

DR/DC arrays for up, down, left and right movement: 
 

const vector<int> DR = {-1,0,0,1}; 

const vector<int> DC = {0,-1,1,0}; 

 

(Note: In most of my posted materials I use DX/DY, but when I coded this example, I used DR 

and DC, where rows are horizontal and the first index and columns are vertical and the second 

index.) 

The reason this is so handy is that we can easily loop through the neighbors of a location in row x, 

column y as follows: 

for (int i=0; i<DR.size(); i++) { 

    int newx = x + DR[i]; 

    int newy = y + DC[i]; 

    // Process location (newx, newy) 

} 

 

Let’s investigate how this works. Consider the case that x = 2, y = 3. Look at this chart for the 

values produced for newx and newy in the loop 

 

direction i x y DR[i] DC[i] newx newy 

up 0 2 3 -1 0 2-1=1 3+0=3 

left 1 2 3 0 -1 2+0=2 3-1=2 

right 2 2 3 0 1 2+0=2 3+1=4 

down 3 2 3 1 0 2+1=3 3+0=3 

 

Thus, the four ordered pairs produced by this loop for (newx, newy) are (1, 3), (2, 2), (2, 4), and 

(3, 3) respectively. These are precisely the grid squares that are above, to the left, to the right and 

below location (2, 3). 

 

  



Two Archtypes for floodfill 

This leads us to two archetypes for floodfill: 

 
void fill(vector<string> grid, int x, int y) { 

 

    grid[x][y] = MARKED; 

 

    for int i=0; i<DR.size(); i++) { 

        int newx = x + DR[i]; 

        int newy = y + DC[i]; 

 

        if (!inbounds(newx, newy)) continue; 

        if (grid[newx][newy] != FILL) continue; 

 

        fill(grid, newx, newy); 

    } 

 

} 

 

void fill(vector<string> grid, int x, int y) { 

 

    if (!inbounds(x,y) return; 

    if (grid[x][y] != FILL) return; 

 

    grid[x][y] = MARKED; 

 

    for int i=0; i<DR.size(); i++) { 

        int newx = x + DR[i]; 

        int newy = y + DC[i]; 

        fill(grid, newx, newy); 

    } 

 

} 

 

In short, there are two ways to avoid recursing when you shouldn’t: not calling the recursion on 

squares that you shouldn’t, OR, screening away invalid cases in the base case before you try 

recursing. 

  



Kattis Problem: Counting Stars 

In this problem you are given a grid with either black sky or white stars as a 2D character grid. 

Here is the problem description: 

 

https://open.kattis.com/problems/countingstars 

 

All of the black sky is indicated by the character ‘#’ and all of the white stars are indicated by the 

character ‘-‘. The goal of the problem is to identify the number of stars in the grid. A single star is 

a connected area of ‘-‘ characters. So the basic method of solution is to loop through the whole 

grid. When an unfilled ‘-‘ character is reached, we run our floodfill on the region its in and add 1 

to our total count. When we run the fill, the ‘-‘ characters are changed, so that we don’t count them 

for a different star. Here is the fill function used to solve the problem where FILL = ‘*’ and STAR 

= ‘-‘: 

 
// Fill the star at (myr, myc). 

void fillStar(int myr, int myc) { 

 

    // Fill this square. 

    grid[myr][myc] = FILL; 

 

    // Try all directions. 

    for (int i=0; i<DR.size(); i++) { 

 

        // Skip stuff out of bounds and previously filled. 

        if (!inbounds(myr+DR[i],myc+DC[i])) continue; 

        if (grid[myr+DR[i]][myc+DC[i]] != STAR) continue; 

 

        // Recursively fill this star. 

        fillStar(myr+DR[i],myc+DC[i]); 

    } 

} 

 

  

https://open.kattis.com/problems/countingstars


Once we have this, it’s fairly easy to write the rest of the support code which reads in each grid 

and processes the cases: 

 
int main() { 

 

    // Process cases. 

    int cnt = 1; 

    while (cin >> r) { 

 

        // Gotta clear the grid... 

        cin >> c; 

        grid.clear(); 

 

        // Read it. 

        for (int i=0; i<r; i++) { 

            string tmp; 

            cin >> tmp; 

            grid.push_back(tmp); 

        } 

 

        // Solve it! 

        cout << "Case " << cnt++ << ": " << solve() << endl; 

    } 

 

    return 0; 

} 

 

// Returns true iff (myr,myc) is in the grid. 

bool inbounds(int myr, int myc) { 

    return myr>=0 && myr<r && myc>=0 && myc<c; 

} 

 

// Solves the given input case. 

int solve() { 

    int res = 0; 

 

    // Go to each square. 

    for (int i=0; i<r; i++) { 

        for (int j=0; j<c; j++) { 

 

            // If necessary, fill this star. 

            if (grid[i][j] == STAR) { 

                res++; 

                fillStar(i, j); 

            } 

        } 

    } 

 

    // Ta da! 

    return res; 

} 


