
Number Theory 

 

I. Prime Sieve, Prime Testing, Prime Factorization 

 

A prime number is one that is only divisible by one and itself. If we are testing a single 

number of primality, we do trial division until the square root of the number. To see this, 

note that if n = ab, where a > 1 and b > 1, at least one of the two is less than or equal to 

the square root. If both were greater, than the product of ab and would greater than 

√𝑛√𝑛 = 𝑛, but it would be impossible for n to be greater than n. Thus, it follows if n has 

a non-trivial divisor, then it must have at least one non-trivial divisor less than or equal to 

the square root of n. Note: for the duration of these notes, long long will be used and 

typdefed to ll. Here is a function that performs this task: 

 
bool isprime(ll n) { 

    if (n<2) return false; 

    for (ll i=2; i*i<=n; i++) 

        if (n%i == 0) 

            return false; 

    return true; 

} 

 

If we want to generate a list of all primes from 2 to n, we can use the Sieve of 

Eratosthenes (https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes). It works as follows: 

 

1) Write down all the numbers from 2 to n. 

2) Go through each number, in order. 

3) For each of these, if it’s not crossed off, circle it.  

4) Then, cross off each multiple of that number. Thus, when we circle 2 at the beginning 

of the algorithm, then cross off 4, 6, 8, 10, and so forth, until we get to the last even 

number less than or equal to n. 

 

The numbers not crossed off at the end of these (the circled ones) are all the primes in the 

range. 

 

As previously mentioned, we can technically stop our outer loop when we get to the 

square root of the number we are checking because any non-prime has at least one non-

trivial divisor less than or equal to its square root. 

 

  



Here is a function that implements a basic prime sieve for all primes upto n and returns a 

bool vector which stores true in an index if that value is prime and false otherwise. 

 
vector<bool> primesieve(int n) { 

 

    // Set up sieve. 

    vector<bool> sieve(n+1); 

    sieve[0] = false; sieve[1] = false; 

    for (int i=2; i<=n; i++) sieve[i] = true; 

 

    // Run it. 

    for (int i=2; i*i<=n; i++) 

        for (int j=2*i; j<=n; j+=i) 

            sieve[j] = false; 

 

    return sieve; 

} 

 

If a number is already crossed off, there is no need to cross off its multiples. For example, 

when we get to 6, all of its multiples were crossed off when we circled 2, so there’s no 

need to cross them off again. Can you think about what to edit in the code above to skip 

these unnecessary loop iterations? Also, what could you edit to stop looking for factors 

after you reach the square root of MAX? 

After implementing the prime sieve, we are left with a boolean array such that sieve[i] is 

set to true if and only if i is prime. For some questions, this formation of the data is good 

enough to solve problems. For other problems, it's necessary to have a list of integers (or 

an array) with the prime numbers in successive order. 

 

Here is a function that places all of the prime numbers identified by the sieve in an 

vector, in numerical order: 

 
vector<int> primelist(int n) { 

 

    // Run sieve. 

    vector<bool> sieve = primesieve(n); 

 

    // Add primes to list and return. 

    vector<int> res; 

    for (int i=2; i<=n; i++) 

        if (sieve[i]) 

            res.push_back(i); 

    return res; 

} 

 

One of these two storage methods should suffice for most problems that require the 

generation of all primes up to some bound. 

 



Once we can check for primality, we can also calculate the prime factorization of an 

integer by repeatedly dividing out prime factors until the number left is prime. Here is 

some code that returns the prime factorization of an integer n as a vector of pairs: 

 
vector< pair<ll,int> > primefact(ll n) { 

 

    // Store each base, exponent pair here. 

    vector< pair<ll,int> > res; 

 

    ll i = 2; 

 

    // We can stop here. 

    while (i*i <= n) { 

 

        // See how many times i goes into n. 

        int exp = 0; 

        while (n%i == 0) { 

            exp++; 

            n /= i; 

        } 

 

        // If necessary add the term. 

        if (exp > 0) { 

            res.push_back(pair<ll,int>(i,exp)); 

        } 

 

        // Go to next integer. 

        i++; 

    } 

 

    // In case we missed one. 

    if (n>1) res.push_back(pair<ll,int>(n,1)); 

    return res; 

} 

 

  



II. GCD, LCM, Modular Inverse 

 

The greatest common divisor of two positive integers is the largest number that divides 

evenly into both. The least common multiple of two positive integers is the smallest 

number such that both of the integers divide evenly into it. 

 

Here is a recursive solution (Euclid's Algorithm) to determine the gcd of two values: 

 
ll gcd(ll a, ll b) { 

    return b == 0 ? a : gcd(b, a%b); 

} 

 

Note that if we have the prime factorizations of two integers, we can find their gcd as 

follows: 

 

Let X = ∏ 𝑝𝑖
𝑥𝑖

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒 , and Y = ∏ 𝑝𝑖
𝑦𝑖

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒 . Then, we have 

 

gcd(X, Y)  = ∏ 𝑝𝑖
min⁡(𝑥𝑖,𝑦𝑖)

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒 . 

 

Similarly, we find that lcm(X, Y)  = ∏ 𝑝𝑖
max⁡(𝑥𝑖,𝑦𝑖)

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒 . 

 

Since it's always true that a + b = max(a, b) + min(a, b) and the exponent rule shows that 

papb = pa+b, it can be proved that 𝑋𝑌 = gcd⁡(𝑋, 𝑌) × 𝑙𝑐𝑚(𝑋, 𝑌). This allows us to find the 

least common multiple of two integers via the GCD algorithm: 

 

𝑙𝑐𝑚(𝑋, 𝑌) = ⁡
𝑋𝑌

gcd⁡(𝑋, 𝑌)
 

 

Thus, we can write an lcm function as follows: 

 
ll lcm(ll a, ll b) { 

    return a/gcd(a,b)*b; 

} 

 

  



Modular Inverse Problem 

The modular inverse problem is as follows, given integer A and N that don't share any 

common factors, for what value(s) of X is 𝐴𝑋 ≡ 1⁡(𝑚𝑜𝑑𝑁). A slight modification of the 

Euclidean Algorithm discovers the value of X as follows (assume ll is typedef'ed for long 

long) 
 

// Wrapper function, returns a^-1 mod n. 

ll modinv(ll a, ll n) { 

 vector<ll> res = modinvrec(a, n); 

 return res[1] >= 0 ? res[1] : res[1] + n; 

} 

 

// returns [x,y] such that nx + ay = 1. 

vector<ll> modinvrec(ll a, ll n) { 

 if (a == 1) return vector<ll>{0,1}; 

 vector<ll> res = modinvrec(n%a, a); 

 return vector<ll>{res[1], res[0]-res[1]*(n/a)}; 

} 

 

There turn out to be problems where you end up needing to do one of two things: 

 

(1) Calculate some expression under mod where you need to divide by an integer. (For 

example, let's say you need to calculate 
𝑥𝑦

𝑧
⁡𝑚𝑜𝑑⁡𝑛. Division isn't allowed, but instead, 

you can calculate 𝑥𝑦(𝑧−1)𝑚𝑜𝑑⁡𝑛. You have to mod after each multiplication so overflow 

doesn't occur. 

 

(2) Solve an equation of the form 𝑎𝑥 ≡ 𝑏⁡(𝑚𝑜𝑑⁡𝑛), where gcd(a, n) = 1 and x is the 

variable for which you want a solution, while a and b are know. We're not allowed to 

divide by a here, but what we CAN do is multiply by 𝑎−1(𝑚𝑜𝑑⁡𝑛). When we do this, the 

right-hand side simplifies to just x, and the solution is (𝑎−1𝑏)⁡(𝑚𝑜𝑑⁡𝑛). 
 

Also, whenever n is prime, it turns out that a-1 mod n is equal to an-2 mod n. Many times, 

in competitive programming, the modulus value is prime, so calling fast modular 

exponentiation with those values will also compute the modular inverse. 

 

 

  



Number and Sum of Divisors of an Integer 

The fundamental theorem of arithmetic states that for any positive integer, n, we can 

prime factorize it in a unique way. Mathematically, we have: 

     

    n = ∏ 𝑝𝑖
𝑛𝑖

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒 , 

 

as a unique representation of n. Consider an example of n = 2533710. Any divisor of n 

must take the form 2a3b7c, where 0 ≤ a ≤ 5, 0 ≤ b ≤ 3, and 0 ≤ c ≤ 10. Since the choice of 

a, b and c are independent of one another, there are exactly (5 + 1)(3 + 1)(10 + 1) = 264 

total divisors of n, since we just multiply the number of possible values of a, b and c 

together. More generally, this means that given the prime factorization of n, the number 

of divisors it has is: 

 

𝑑(𝑛) = ∏ (𝑛𝑖 + 1)

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒

 

 

If we wanted to sum the divisors, let's go back to our example. We would want to add all 

numbers of the form 2a3b7c, where 0 ≤ a ≤ 5, 0 ≤ b ≤ 3, and 0 ≤ c ≤ 10. Consider the 

following product: 

 

(20 + 21 + 22 + … + 25) (30 + 31 + 32 + 33) (70 + 71 + 72 + … + 710) 

 

Notice that when we foil this out, it'll have 6 x 4 x 11 terms, and that each term will be a 

unique term of the form 2a3b7c, where 0 ≤ a ≤ 5, 0 ≤ b ≤ 3, and 0 ≤ c ≤ 10. This means 

that this expression is the sum of the divisors of the original number!!! Since each of 

the summations are a geometric sequence, we can create a closed form formula for each 

sum to derive this formula: 

 

𝜎(𝑛) = ∏ (∑𝑝𝑖
𝑗

𝑛𝑖

𝑗=0

)

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒

= ∏ (
𝑝𝑖
𝑛𝑖+1 − 1

𝑝𝑖 − 1
)

𝑝𝑖∈𝑃𝑟𝑖𝑚𝑒

 

  



Euler Phi/Totient Function 

One useful value in many problems is the Euler Totient function (or Phi function). We 

define the function as follows: 

 

𝜙(𝑛)⁡= the number of values in the set {1, 2, 3, …, n} that are relatively prime with n. 

 

We can calculate φ(n) as follows: 

 

1) Find all unique prime factors, p1, p2, …, pk of n. (Doesn't matter how many times each 

of them appears in n.) 

 

2) 𝜙(𝑛) = 𝑛∏ (1 −
1

𝑝𝑖
)𝑘

𝑖=1  

 

Note that the pi symbol simply indicates multiplying each term instead of adding each 

enumerated term. 

 

An alternate formula with the prime factorization of n is: 

 

3) 𝜙(𝑛) = ∏ (𝑝𝑖
𝑛𝑖 − 𝑝𝑖

𝑛𝑖−1)𝑘
𝑖=1  

 

Both are mathematically equivalent. Either should be equally easy to code. There are 

several types of programming team questions where one wants to find the number of 

values from 1 to n that don't share a common factor with n. Here is a function that 

determines 𝜙(𝑛): 
 
ll phi(ll n) { 

 

    ll res = n; 

    int i = 2; 

 

    while (i*i <= n) { 

        int exp = 0; 

        while (n%i == 0) { 

            exp++; 

            n /= i; 

        } 

 

        if (exp > 0) res = res/i*(i-1); 

        i++; 

    } 

 

    if (n>1) res = res/n*(n-1); 

 

    // This is phi. 

    return res; 

} 



Note that if we had to calculate phi of many values (say 1 to 106), we could pre-compute 

them quickly because once we find one prime factor and factor its copies out, we can use 

the third formula to build 𝜙(𝑛) from 𝜙(𝑚), where m is what's left when you divide out 

all copies of some prime p from n. Here is the code for that function: 

 
vector<int> philist(int n) { 

 

    // To speed this up. 

    vector<bool> isprime = primesieve(n); 

 

    // Initialize phi list. 

    vector<int> res(n+1); 

    res[0] = 0; res[1] = 1; res[2] = 1; 

 

    // Solve for rest. 

    for (int i=3; i<=n; i++) { 

 

        // Take care of these cases. 

        if (isprime[i]) { 

            res[i] = i-1; 

            continue; 

        } 

 

        // Find smallest prime divisor. 

        int j = 2; 

        while (i%j != 0) j++; 

 

        // Divide out all copies of j. 

        int newi = i, mypow = 1; 

        while (newi%j == 0) { 

            newi /= j; 

            mypow *= j; 

        } 

 

        // Phi formula. 

        res[i] = res[newi]*(mypow - mypow/j); 

    } 

 

    return res; 

} 

 

 

 

  



Euler's Theorem 

Modular exponentiation is cyclic. For any base, as you raise it to higher and higher 

exponents, eventually the list of remainders mod some given n repeats in a cyclic pattern. 

The length of any of these cycles always divides evenly into 𝜙(𝑛). 
 

Euler's Theorem is as follows: 

 

if gcd(a, n) = 1, then 𝑎𝜙(𝑛) ≡ 1(𝑚𝑜𝑑⁡𝑛) 
 

This theorem allows us to quickly figure out modular exponentiation results. A nice trick 

based on this theorem is determining the modular inverse of a value. Note that: 

 

𝑎 × 𝑎𝜙(𝑛)−1 ≡ 1(𝑚𝑜𝑑⁡𝑛) 
 

It follows that  

𝑎−1 ≡ 𝑎𝜙(𝑛)−1(𝑚𝑜𝑑⁡𝑛) 
 

A completely random fact about primes and factorials 

The number of times a prime p divides evenly into n! is 
=








n

k
kp

n

1

 

 

Couple notes: the brackets stand for the floor function. The sum doesn't really need to go 

to n. You'll notice that pk fairly quickly exceeds the value of n. When it does, all 

subsequent terms in the sum are 0. So you just have to sum all the terms until one is zero. 

A brief explanation as to why this works is imagine dividing out p from the written out 

expression n! You would cancel out one out of every p values. But this would leave some 

extra terms, since when you got to p2 or any mutliple thereof, you would have only 

cancelled out one of the two p's  in that term. That's where the rest of the sum comes in. 

k=2 knocks out the extra factors in each term that is divisible by p2,  

k=3 knocks out the extra factors in each term that is divisible by p3, etc. 

 

Here is code that does this computation: 

 
ll numTimesDivide(ll n, ll p) { 

    ll res = 0; 

    while (n >= p) { 

        res += n/p; 

        n /= p; 

    } 

    return res; 

} 

 


