Minesweeper and Huffman Encoding
------GUI notes---
JOptionPane.showMessageDialog(mineSweeperFrame,
 "Congratulations; you’ve successfully cleared the board!",

 "You’ve won!");
You could call System.currentTimeMillis() when the first button is clicked and when the user has won to give them their score.

If you’re writing an application, you could store high scores in a textfile in the working directory and load them—you can’t save files on the client if you’re making an applet, so things are more difficult.

If you feel so inclined, you can download the source for a Java timer display from http://javaboutique.internet.com/JavaTimer/

If you separated the logic of your minesweeper board from the output method in your initial homework assignment, it shouldn’t be too hard to design the GUI.

------Huffman Encoding---
Huffman coding is a way to reduce the amount of space needed to represent characters in (canonically) a text file. Ordinarily, each ASCII character requires 8 bits to store, as there are 128 characters defined in the set. But with Huffman encoding, we can decrease the amount of bits needed to represent each character in the document; namely, we can give binary codes to characters that use a smaller amount of bits to represent characters that occur frequently and a larger amount to represent the rarer characters. Huffman coding uses prefix-free encoding—no two Huffman codes begin with the same set of characters. This means there is no ambiguity about when a code ends and the next begins when one decodes a sequence of Huffman codes.
Given a set of symbols and their frequencies, we want to fill a binary tree with the characters such that each has the minimum weighted path length. Say the input is characters in a text file. We start with a 2D array, with the characters as first column, and zeroes as the second column. We read through the text file, incrementing the appropriate element as each character is read. We then have a frequency list for the characters. We could have an additional column to hold the Huffman codes that are generated.
We need to insert nodes with characters and their frequencies into a binary tree. Each character ends up as a leaf node, and the path that one must take from the root to that leaf node becomes its Huffman code, designating the direction one must take at each branch arbitrarily as 1 or 0. Here we’ll use 1 for right and 0 for left. More frequent characters become leaf nodes closer to the root.

The process for determining the leaf node’s position:

We sort the characters/nodes in a list by increasing frequency.

We remove the nodes with the two lowest frequencies and create a new node with their sum as its frequency (and a filler symbol for its character), and make that new node have the first two nodes as children. We then put the new parent node in the list in its appropriate place by size.

(We can have two queues to do this. In one, we can initially enqueue the starting nodes in by increasing size. In the second, we can enqueue the parent nodes as they are made. This guarantees the smallest frequency nodes will always be at the start of the queues, reducing messy array or linked-list insertion and removal coding.)

We keep doing this until only one node remains—this will be the root node of our Huffman tree. We can then travel to each leaf node to determine its path/Huffman code and store it in our frequency list.
(White board Example)
Another example, with numerical values with probabilities already determined: http://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html

Problem to do in class: Generate Huffman codes for the characters in the following string as was demonstrated in class. Write out the Huffman sequence for the string and give the difference between the size in bits of the Huffman sequence and the size of bits in the sequence if it were written with 8 bits per character.
“yabba dabba doo”
Solution: http://www.cs.sfu.ca/cs/CC/365/li/squeeze/
For a code example, you can look at the Javapad file on the course website.
More on practical Huffman Encoding: www.compressconsult.com/huffman/

