Linked Lists

In CS1, you learned how to implement a linked list in C. In Java, the main difference will be that you do not explicitly use pointers. Instead, since every non-primitive is a reference, you will simply link together nodes using references.

Here is the Node class that we will use:

public class Node {

 public int data;

 public Node next;

 public Node() {

 data = 0;

 next = null;

 }

 public Node(int x) {

 data = x;

 next = null;

 }

}

The most important methods in a linked list class are those for insertion and deletion. These are the two I have selected to show you today. In this implementation, the linked list of integers is maintained in numerical order.

Here are a list of issues we should think about before looking at the code.

1) How to insert into an empty list

2) How to insert into the front of a linked list

3) How to insert into the middle of a linked list

4) How to insert into the back of a linked list

With respect to deletions, the same types of questions arise:

1) How do we determine if an element is NOT in the linked list to delete.

2) Once we find an element, if it is in the front of the list, how do we delete it?

3) If it is in the middle of the list, how do we delete it?

4) If it is in the end of the list, how do we delete it?

Let's go through and draw some examples of how to do each of these things before analyzing the code.

// Arup Guha

// 9/3/02

// Portion of a linked list class, using only one instance variable.

import java.util.Random;

public class LL {

 private Node head;

 // Initializes the LL object to be empty.

 public LL() {

 head = null;

 }

 public boolean isEmpty() {

 return (head == null);

 }

 public void makeEmpty() {

 head = null;

 }

 // Creates a node with the value x and inserts it into the LL object.

 public void insert(int x) {

 Node temp = new Node(x); // Create a node with the value x.

 // Take care of the case where the LL object is empty.

 if (head == null)

 head = temp;

 // Deal with the standard case.

 else {

 // Insertion into the front of the LL object.

 if (head.data > x) {

 temp.next = head;

 head = temp;

 }

 else {

 // Set up helper reference to refer to the node that the inserted

 // node should be inserted after.

 Node helper = head;

 while ((helper.next != null) && (helper.next.data < x))

 helper = helper.next;

 // Adjust necessary references.

 temp.next = helper.next;

 helper.next = temp;

 }

 }

 }

 // Removes a node storing the value x. If no such node exists, nothing

 // is done and the method returns false. Otherwise, the node is

 // removed and true is returned.

 public boolean remove(int x) {

 // Can't remove anything from an empty list.

 if (head == null)

 return false;

 // Remove the first element, if necessary.

 if (head.data == x) {

 head = head.next;

 return true;

 }

 // Set up helper reference to refer to the node right before the node

 // to be deleted would be stored.

 Node helper = head;

 while ((helper.next != null) && (helper.next.data < x))

 helper = helper.next;

 // If x was too big to be on the list, simply return false.

 if (helper.next == null)

 return false;

 // Only if the appropriate node stores x should it be deleted.

 if (helper.next.data == x) {

 helper.next = helper.next.next;

 return true;

 }

 return false; // Case where x is not found.

 }

 // Prints out all the elements in the LL object in the order they are

 // stored.

 public void printlist() {

 Node temp = head;

 while (temp != null) {

 System.out.print(temp.data+" ");

 temp = temp.next;

 }

 }

}

Class Exercise

Add a method to the LL class that will return a copy of the current linked list object. (Thus, if the current object is a node that is the head of a list with the values 2, 3, 6, and 8, the method should return a reference to a new node that is the head of a new list storing the same values in the same order.) The prototype is below:

public LL copy();

Linked List Stack Implementation

You should have developed a linked list stack implementation in recitation last week. Here are some key observations about such an implementation:

1) Only once Node instance variable is necessary.

2) Pushing simply involves inserting a node to the front of the linked list storing the stack.

3) Popping also involves deleting the front Node of the linked list storing the stack.

4) We can check to see if the list is empty just by checking if the instance variable of the class is null or not.

public class Stack {

 private Node front;

 public Stack() {

 front = null;

 }

 public void push(int n) {

 Node temp = new Node(n);

 temp.next = front;

 front = temp;

 }

 public int pop(int n) {

 if (front == null) return -1;

 int retval = front.data;

 front = front.next;

 return retvall;

 }

}

 Linked List Queue Implementation

One key observation is necessary about this implementation:

Two node instance variables are needed for an efficient implementation because enqueues and dequeues access the opposite "sides" of the data. Since this is the case, both instance variables have to be maintained. Here is some of the class:

public class Queue {

 private Node front;

 private Node back;

 public Queue() {

 front = null;

 back = null;

 }

 public void enqueue(int n) {

 back = new Node(n);

 if (front == null)

 front = back;

 }

 public int dequeue() {

 if (front==null) return -1;

 int retval = front.data;

 front = front.next;

 return retval;

 }

}

