Java Event Handling
Helpful Link -- http://java.sun.com/docs/books/tutorial/uiswing/events/api.html
When using JCreator, you may find it very handy to use the Interface Implementer via the Tools menu option—event interfaces are located under java.awt.event.

In general, import javax.swing.*, java.awt.*, and java.awt.event.*.

Action Listener – implement ActionListener

Override method:

public void actionPerformed(ActionEvent e)
This method handles when an object that has an action listener instantiated on it has an action performed (the name doesn’t give it away, eh?)

To add an action listener to a Component c:
c.addActionListener(this);

Inside of the actionPerformed() method, to get the name of the object that an action just occurred on:

e.getActionCommand();

This command returns a String.

If you prefer to create a new class to handle actions, you would do it as such:

public class actionHandler implements ActionListener {

public void actionPerformed(ActionEvent e) {

System.out.println(e.getActionCommand());

}

}

Then in your class where you add the action listener to Component c:

c.addActionListener(new actionHandler());

Key Listener – implement KeyListener

Override methods:

public void keyPressed(KeyEvent e)

public void keyTyped(KeyEvent e)

public void keyReleased(KeyEvent e)

This method handles when a key is pressed on an object that CURRENTLY HAS FOCUS. If an object does not currently have focus and has a Key Listener attached to it, then any keys typed in by the user will not trigger that key listener.
You can add a Key Listener to a Component c by:

c.addKeyListener(this);

The order in which these methods are processed is:

1. keyPressed()

2. keyTyped()

3. keyReleased()

If you hold down a key, it goes back and forth between keyPressed() and keyTyped(), with keyPressed() being executed first in each ‘cycle.’

Inside any of the methods you are overriding, you can get information about the key that was input via:

e.getKeyChar(); -- returns char of key

e.getKeyCode(); -- returns int value of keyCode

e.getKeyText(int keyCode); -- returns String of key pressed (use together with e.getKeyCode())

Note: If you are trying to add key listeners that allow you to have shortcut keys to menu items, instead of adding keyListeners to everything on your frame and seeing if the right keyboard combination is pressed, you can use JMenuItem’s setAccelerator(KeyStroke keyStroke) method. If you have JMenuItem menuItem instantiated, and want to be able to access it by pressing Ctrl+N (as in creating a new file in almost any program), you could add the following line to your program:

menuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_N,ActionEvent.CTRL_MASK));
The first argument to getKeyStroke() is the KeyEvent itself, the second is the ActionEvent, which is essentially any key modifiers (in this case, the Ctrl key). If instead we wanted to be able to use F2 to create a new file, as some other programs use, we could do it by adding the line:

menuItem.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_F2,0));
Notice that here we simply pass 0 as the ActionEvent for any modifiers.

When we use the setAccelerator() method, we only need to add actionListeners to our menu items—the accelerator takes care of when the key combination assigned is pressed to trigger that action event.

Mouse Listener - implement MouseListener

(These should all be starting to look similar…)

Override methods:

public void mouseClicked(MouseEvent e)

public void mouseEntered(MouseEvent e)

public void mouseExited(MouseEvent e)

public void mousePressed(MouseEvent e)

public void mouseReleased(MouseEvent e)

Again, this can be added to a Component c by the following line of code:

c.addMouseListener(this);

You can use the following methods on MouseEvent e to get info about your mouse click (note that some methods only make sense to be used in some of the overridden methods…)

e.getButton() – returns int of which button was pressed (1 == first mouse button, 2 == middle

mouse button, 3 == right mouse button)

e.getClickCount() – returns the current count of the number of clicks on Component (used for

double clicking and the like)

e.getPoint() – returns a Point data structure with the x & y coordinates of the mouse pointer

relative to the top left corner of the window being (0,0)

e.getLocationOnScreen() – same as getPoint(), but returns location on entire screen, not just

relative to where the frame is located.

This is just an idea of some of the events that can be handled using Java—check out the site linked at the beginning of this for full tutorials on all of these events, as well as the list of all the other events you can handle. And remember, the Java API is your friend! If you are confused about what methods you can call or what a method is expecting you to pass it, don’t be afraid to ask the API!
