Longest Common Subsequence Problem

The problem is to find the longest common subsequence in two given strings. A subsequence of a string is simply some subset of the letters in the whole string in the order they appear in the string. In order to denote a subsequence, you could simply denote each array index of the string you wanted to include in the subsequence. For example, given the string "GOODMORNING", the subsequence that corresponds to array indexes 1, 3, 5,  and 6 is "ODOR."

Here is the basic idea behind solving the problem:

If the initial characters of both strings s1 and s2 match, then the LCS will be one plus the LCS of both of the rest of the strings.

If the initial characters of both strings do NOT match, then the LCS will be one of two options:

1) The LCS of x and the rest of y (not including the first character.)

2) The LCS of y and the rest of x (not including the first character.)

Thus, in this case we will simply take the maximum of these two values. Let's examine the code for both the recursive solution to LCS and the dynamic programming solution:

// Arup Guha

// 9/26/03

// The method below solves the longest common subsequence 

// problem recursively.

import java.io.*;

public class LCS {

  // Precondition: Both x and y are non-empty strings.

  public static int lcsrec(String x, String y) {

    // If one of the strings has one character, search for that 

    // character in the other string and return the appropriate 

    // answer.

    if (x.length() == 1) 

        return find(x.charAt(0), y);

    if (y.length() == 1)

        return find(y.charAt(0), x);

    // Solve the problem recursively.

    // Corresponding characters match.

    if (x.charAt(0) == y.charAt(0))

        return 1+lcsrec(x.substring(1), y.substring(1));

    // Corresponding characters do not match.

    else 

        return max(lcsrec(x,y.substring(1)),  

                             lcsrec(x.substring(1),y));

  }

See if you can convert this into dynamic programming!

The Change Problem

"The Change Store" was an old SNL skit (a pretty dumb one...) where they would say things like, "You need change for a 20? We'll give you two tens, or a ten and two fives, or four fives, etc."

If you are a dorky minded CS 2 student, you might ask yourself (after you ask yourself why those writers get paid so much for writing the crap that they do), "Given a certain amount of money, how many different ways are there to make change for that amount of money?"

Let us simplify the problem as follows:

Given a positive integer n, how many ways can we make change for n cents using pennies, nickels, dimes and quarters?

Recursively, we could break down the problem as follows:

To make change for n cents we could:

1) Give the customer a quarter. Then we have to make change for n-25 cents

2) Give the customer a dime. Then we have to make change for n-10 cents

3) Give the customer a nickel. Then we have to make change for n-5 cents

4) Give the customer a penny. Then we have to make change for n-1 cents.

If we let T(n) = number of ways to make change for n cents, we get the formula

T(n) = T(n-25)+T(n-10)+T(n-5)+T(n-1)

Is there anything wrong with this?

If you plug in the initial condition T(1) = 1, T(0)=1, T(n)=0 if n<0, you'll find that the values this formula produces are incorrect. (In particular, for this recurrence relation T(6)=3, but in actuality, we want T(6)=2.)

So this can not be right. What is wrong with our logic? In particular, it can been seen that this formula is an OVERESTIMATE of the actual value. Specifically, this counts certain combinations multiple times. In the above example, the one penny, one nickel combination is counted twice. Why is this the case?

The problem is that we are counting all combinations of coins that can be given out where ORDER matters. (We are counting giving a penny then a nickel separately from giving a nickel and then a penny.)

We have to find a way to NOT do this. One way to do this is IMPOSE an order on the way the coins are given. We could do this by saying that coins must be given from most value to least value. Thus, if you "gave" a nickel, afterwards, you would only be allowed to give nickels and pennies.

Using this idea, we need to adjust the format of our recursive computation:

To make change for n cents using the largest coin d, we could

1)If d is 25, give out a quarter and make change for n-25 cents using the largest coin as a quarter.

2)If d is 10, give out a dime and make change for n-10 cents using the largest coin as a dime.

3)If d is 5, give out a nickel and make change for n-5 cents using the largest coin as a nickel.

4)If d is 1, we can simply return 1 since if you are only allowed to give pennies, you can only make change in one way.

Although this seems quite a bit more complex than before, the code itself isn't so long. Let's take a look at it:

public static int makeChange(int n, int d) {

    if (n < 0)

        return 0;

    else if (n==0)

        return 1;

    else  {

        int sum = 0;

        switch (d)
{

            case 25: sum+=makeChange(n-25,25);


   case 10: sum+=makeChange(n-10,10);

            case 5: sum += makeChange(n-5,5);

            case 1: sum++;

         }

         return sum;

     }

}

There's a whole bunch of stuff going on here, but one of the things you'll notice is that the larger n gets, the slower and slower this will run, or maybe your computer will run out of stack space.  Further analysis will show that many, many method calls get repeated in the course of a single initial method call.

In dynamic programming, we want to AVOID these reoccuring calls. To do this, rather than making those three recursive calls above, we could store the values of each of those in a two dimensional array. 

Our array could look like this

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	5
	1
	1
	1
	1
	2
	2
	2
	2
	2
	3
	3
	3
	3
	3
	4

	10
	1
	1
	1
	1
	2
	2
	2
	2
	2
	4
	4
	4
	4
	4
	6

	25
	1
	1
	1
	1
	2
	2
	2
	2
	2
	4
	4
	4
	4
	4
	6


Essentially, each row label stands for the number of cents we are making change for and each column label stands for the largest coin value allowed to make change.

Now, let us try to write some code that would emulate building this table by hand, from left to right.

  public static int makeChangedyn(int n, int d) {

      // Take care of simple cases.

      if (n < 0)

          return 0;

      else if ((n>=0) && (n < 5))

          return 1;

       // Build table here.

       else {

            int[] denominations = {1, 5, 10, 25};

            int[][] table = new int[4][n+1];

            // Initialize table

            for (int i=0; i<n+1;i++)

                table[0][i] = 1;

            for (int i=0; i<5; i++) {

                table[1][i] = 1;

                table[2][i] = 1;

                table[3][i] = 1;

            }

            for (int i=5;i<n+1;i++) {

                table[1][i] = 0;

                table[2][i] = 0;

                table[3][i] = 0;

            }

           // Fill in table, row by row. 

           for (int i=1; i<4; i++) {

                for (int j=5; j<n+1; j++) {

                    for (int k=0; k<=i; k++) {

                        if ( j >= denominations[k])

                             table[i][j] += table[k][j - denominations[k]];

                    } 

                }

            }        

            return table[lookup(d)][n]; 

       }

  }

The 0-1 Knapsack Problem

The difference between this problem and the fractional one is that you can't take a fraction of an item. You either take the whole thing or none of it. So here, is the problem formally described:

Your goal is to maximize the value of  a knapsack that can hold at most W units worth of goods from a list of items I1,  I2,  ... In. Each item has two attributes:

1) Value - let this be vi for item Ii.

2) Weight - let this be wi for item Ii.

Now, instead of being able to take a certain weight of an item, you can only either take the item or not take the item.

The nieve way to solve this problem is to cycle through all 2n subsets of the n items and pick the subset with a legal weight that maximizes the value of the knapsack. But, we can find a dynamic programming algorithm that will USUALLY do better than this brute force technique.

Our first attempt might be to characterize a subproblem as follows:

Let Sk be the optimal subset of elements from {I1, I2,... Ik}. But what we find is that the optimal subset from the elements {I1, I2,... Ik+1} may not correspond to the optimal subset of elements from {I1, I2,... Ik} in any regular pattern. Basically, the solution to the optimization problem for Sk+1 might NOT contain the optimal solution from problem Sk.

To illustrate this, consider the following example:

Item

Weight

Value

I1

3


10

I2

8


4

I3

9


9

I4

8


11

The maximum weight the knapsack can hold is 20.

The best set of items from {I1, I2, I3} is {I1, I2, I3}  but the best set of items from {I1, I2, I3, I4}  is {I1, I3, I4}   which does not contain the elements A, B, and C.

So, now, we must rework our example. In particular, after trial and error we may come up with the following idea:

Let B[k,w] represent the maximum total value of a subset Sk with weight w. Our goal is to find B[n, W], where n is the total number of items and W is the maximal weight the knapsack can carry.

Using this definition, we have B[0, w] = 0, for all valid values of w. 

Now, we can derive the following relationship that B[k,w] obeys:

B[k,w] = B[k - 1,w], if wk > w


    = max { B[k - 1,w], B[k - 1,w - wk] + vk}

In English, here is what this is saying:

1) The maximum value of a knapsack with a subset of items from {I1, I2, ... Ik} with weight w is the same as the maximum value of a knapsack with a subset of items from {I1, I2, ... Ik-1} with weight w, if the kth item weighs greater than w. 

So basically, you can increase the value of your knapsack with weight w, if the new item you are considering weighs more than w.

2) The maximum value of a knapsack with a subset of items from {I1, I2, ... Ik} with weight w could be the same as the maximum value of a knapsack with a subset of items from {I1, I2, ... Ik-1} with weight w, if item k should not be added into the knapsack.

OR

3) The maximum value of a knapsack with a subset of items from {I1, I2, ... Ik} with weight w could be the same as the maximum value of a knapsack with a subset of items from {I1, I2, ... Ik-1} with weight w-wk, plus item k. 

You need to compare the values of knapsacks in both case 2 and 3 and take the maximal one.

Recursively, we will STILL have an O(2n) algorithm. But, using dynamic programming, we simply have to do a double loop - one loop running n times and the other loop running W times.

Here is a dynamic programming algorithm to solve the 0-1 Knapsack problem:

Input: S, a set of n items as described earlier, W the total weight of the knapsack.

Output: The maximal value of items in a valid knapsack.

for w=0 to W

     B[w] = 0

for k=1 to n {

     for w = W downto to wk  {

          if (B[w - wk] + vk > B[w])


     B[w] = B[w - wk] + vk 
     }

}

Let's run through an example:

	i
	Item
	wi
	vi

	1
	I1
	4
	6

	2
	I2
	2
	4

	3
	I3
	3
	5

	4
	I4
	1
	3

	5
	I5
	6
	9

	6
	I6
	4
	7


W = 10

	Item
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	0
	0
	0
	0
	0
	6
	6
	6
	6
	6
	6
	6

	1
	0
	0
	4
	4
	6
	6
	10
	10
	10
	10
	10

	2
	0
	0
	4
	5
	6
	9
	10
	11
	11
	15
	15

	3
	0
	3
	4
	7
	8
	9
	12
	13
	14
	15
	18

	4
	0
	3
	4
	7
	8
	9
	12
	13
	14
	16
	18

	5
	0
	3
	4
	7
	8
	10
	12
	14
	15
	16
	19


