
SI@UCF Python Program: List Function Practice

Objectives

1. To learn how to use lists.

2. To write functions that take in lists as parameters.

3. How to return a list from a function.

4. To integrate the working functions into a full program.

Problem A: valsInRange Function (inrange.py)

Write a function that takes in a list of integers, vals, an integer low, and an integer

high and returns the number of integers in vals that are in between low and high,

inclusive. To make sure your function is working, test it using the test function given

below:

def valsInRange(vals,low,high):

 # Fill in your code here.

def testValsInRange():

 print(valsInRange([3,12,6,5,2,8,9], 4, 9))

 print(valsInRange([100, 99, 98, 97], 0, 100))

 print(valsInRange([30,40,50,55,59,20], 60, 100))

 print(valsInRange([36,16,25,24,36,23,23,20,32], 23,35))

testValsInRange()

When you run the test, it should print 4, 4, 0, and 5, respectively, on separate lines.

 2

Problem B: getValsInRange Function (listinrange.py)

Write a function that takes in a list of integers, vals, an integer low, and an integer

high and returns a list with each value in vals that is in between low and high,

inclusive.

def getValsInRange(vals,low,high):

 # Fill in your code here.

def testValsInRange():

 print(getValsInRange([3,12,6,5,2,8,9], 4, 9))

 print(getValsInRange([100, 99, 98, 97], 0, 100))

 print(getValsInRange([30,40,50,55,59,20], 60, 100))

 print(getValsInRange([36,16,25,24,36,23,23,20,32], 23,35))

testValsInRange()

When you run the test it should print the following:

[6, 5, 8, 9]

[100, 99, 98, 97]

[]

[25,24,23,23,32]

 3

Problem C (Optional): Direction Changes Function (dirchange.py)

Write a function that takes in a list of integers, vals, and returns the number of direction

changes in the list. The current direction of a list of numbers is defined by the first

consecutive pair of numbers that are unequal. The pair (a, b) is defined as “up” if a < b and

is defined as “down” if a > b. We can look at each pair of consecutive numbers in a

sequence and define their change as either “up”, “down” or “neither” (for 2 equal numbers).

Consider converting a list of n values into a list of n-1 of these changes then ignoring each

“neither” change. A direction change is either an “up”-“down”, or “down”-“up”

def numChanges(vals):

 # Fill in your code here.

def testNumChanges():

 print(numChanges([3,12,6,5,5,5,2,2,2,8,8,9]))

 print(numChanges([100, 99, 98, 97]))

 print(numChanges([30,30,40,50,55,59,20]))

 print(numChanges([36,16,25,24,36,23,23,40,32]))

 print(numChanges([2]))

 print(numChanges([3,3,3,3,3,3,3,3,3,3,3]))

 print(numChanges([3,3,3,3,3,3,3,3,3,3,3,4]))

 print(numChanges([3,4,3]))

 print(numChanges([3,3,3,3,3,3,4,4,4,3,3,3,3,3,3,3]))

testNumChanges()

When you run the test it should print the following:

2

0

1

6

0

0

0

1

1

