BHCSI Algorithms Program Connect Four
Problem

Connect 4 is a popular kids game, similar to tic-tac-toe, where players can't place a piece in any location, but must drop each playing piece in one of seven rows and the piece will always fall to the lowest unfilled square. (Of course, the winner is whoever gets 4 of their pieces consecutively in a row, column or diagonal.) Your job in this assignment is to write a computer player for this game. At its core, the computer player must take in a board position (layout of the pieces for both teams), and return a valid move (an integer in between 0 and 6, representing which column to drop its next piece.)

To complicate matters a bit, many competitive games are timed, thus, for your project, in addition to considering the board position, you'll also have to consider how much time you have left to spend on all of the moves left in the game. In particular, your computer player will be given 5 minutes to complete all of its moves in a particular game. Whenever it’s asked to move, it will be told exactly how much time is left in the whole game.
Implementation Requirements
You must use the provided file, ConnectFour.java. It defines an object for the game. Your task will be to determine a move (one of 7 possible ones) for the current player, given a copy of the current ConnectFour object. You must write your player in its own class. Two examples are provided, Bob.java and Carol.java. Your class must implement the C4Contestant interface that is included. Name your file whatever you wish. Within that file you must write a method that fits the following prototype:
// Preconditions: copy represents a valid connect 4 game

// in progress that has at least one empty

// square in which to place a piece in

// which neither team has won yet.

// myTime represents the number of

// milliseconds left for this team's
// computer player to finish all of its
// moves in the game.

// Postconditions: A valid move, an integer in between 0

// and 6, corresponding to a column that

// is not full, is returned.

public static int move(ConnectCour copy, long myTime);

Obviously, it's quite easy to write a valid game player, such as Bob.java. (What is Bob's strategy, incidentally?)

But, your grade will be commensurate to the amount of effort, sophistication, and performance of your computer player. It is exceedingly unlikely that a simplistic player like this one would perform well against other players.
Here's a print out of the state of a game board in progress:

 0 1 2 3 4 5 6

5

4

3

2 O O

1 X X X

0 X O X O

 0 1 2 3 4 5 6
In this game, X moved first, and currently it is O's turn. If O moves in either slot 1 or 5, then X would win in the following turn, since X already has 3 in a row on row 1.

Your function is NOT allowed to call the function for other teams. In essence, you are NOT allowed to find out what another team “would do” if you were to make a particular move, when deciding your own move.
Other Notes
You have no responsibility to write code that determines when a game is over, who has won a game, or how much time any team has used in the course of a game. Your ONLY responsibility is to write the function specified previously. The ConnectFour.java file has all of this functionality. You are not allowed to alter this file. You are, however, allowed to call any public methods from this class. Note that Bob and Carol have made very, very limited use of this class. In particular, you will more than likely want to use the getBoard() method, which neither of those players used.
The way my code will work is as follows: If a team has exceeded its time limit, returned an invalid move, OR made a move that has resulted in a losing board position, then the game will immediately be halted and the other team will be declared the winner. Similarly, if a team returns a move which results in a winning board position, the game will be halted and the team will be declared the winner. In all other cases, the other team will simply be called to move on the adjusted game board.
