
SI@UCF Computer Science Camp

Intro to Competitive Programming in C++

Quiz #2 Solutions

Date: 6/25/2025

1) (20 pts) Complete the program below so that it solves the following problem:

The first line of input contains two positive integers, n (2 ≤ n ≤ 200,000), and t (3 ≤ t ≤ 2x109).

The following n lines contain one positive integer each. Each of these integers is distinct and in

between 1 and 109. Output “Yes” if there exist two different integers on the list that add up to t

exactly, and output, “No”, if no two integers in the list exist that add up to t exactly. To get

significant credit, your solution must run in O(nlgn) time. (This means you can’t do a double for

loop through the data.) Do not use a set or map in your solution. (This will be follow up

question.)

using namespace std;

#include <bits/stdc++.h>

int main() {

 int n, t;

 cin >> n >> t;

 vector<int> vals(n);

 for (int i=0; i<n; i++)

 cin >> vals[i];

 sort(vals.begin(), vals.end()); // 5 pts

 string res = "No"; // 3 pts

 int i = 0, j = n-1;

 while (i < j) { // 2 pts

 if (vals[i]+vals[j] < t) // 3 pts

 i++;

 else if (vals[i]+vals[j] > t) // 3 pts

 j--;

 else { // 3 pts

 res = "Yes";

 break;

 }

 }

 cout << res << endl; // 1 pt

 return 0;

}

Grading Note: max 10/20 for O(n2) solution

2) (15 pts) Alter the solution in question #1 so that instead of sorting the input values (this is what

you should have done in the first step…) you avoid sorting the input values and use a set instead.

In doing this, make sure you account for the fact that the two numbers that have to add up to the

target have to be distinct. Write the code for this solution below. (Just the part that goes in the PUT

SOLUTION HERE portion of the code on the previous page.)

 set<int> nums; // 5 pts add to set

 for (int x: vals)

 nums.insert(x);

 string res = "No"; // 1 pt init

 for (int i=0; i<n; i++) { // 1 pt

 int need = t - vals[i]; // 2 pts

 if (need == vals[i]) continue; // 2 pts

 if (nums.count(need) > 0) // 3 pts

 res = "Yes";

 }

 cout << res << endl; // 1 pt

3) (10 pts) Jerrod is writing a program that reads in votes for an election and needs to output the

results sorted in order by number of votes, breaking ties by name. His idea is to use two maps, one

map<string,int> and one map<int,string>. The first map would map each name to the number of

votes. He would read in all the input data and build this map. Then, he would essentially copy that

data into the second map, making the key the number of votes and the associated value the name.

Unfortunately, he got a wrong answer when submitting his solution to this problem.

Fundamentally, what is his error?

It’s possible that two people will get the same number of votes. In a map, it’s not possible for one

key to map to two different values. So, if Alia and Simon both get 6 votes, the initial map would

show Alia → 6, Simon → 6, but the flipped map can not store 6 → Alia, Simon. Instead, the flipped

map would erase over the first entry for six votes with the second entry for 6 votes, which is

essentially removing a candidate from the election without due process =)

Grading: up to grader discretion

4) (25 pts) In the game of minesweeper, the game board is a 2D grid where each square is either

an underscore (‘_’) or a star (‘*’). The stars represent bombs and the underscores represent valid

squares. We define a safe valid square to be a valid square that has 2 or fewer adjacent bombs. A

bomb is adjacent to a square if it is next to it either up, down, left, right or in one of the four

possible diagonal directions. (Thus, the maximum number of bombs that could be adjacent to a

valid square is 8.) Write a function that takes in the game board for minesweeper (a vector of

strings, where all characters are either ‘_’ or ‘*’), and returns the number of the valid squares on

that grid that are safe. Please define your own DX/DY arrays before the function.

const vector<int> DX = { -1,-1,-1,0,0,1,1,1 }; // 4 pts for DX/DY

const vector<int> DY = { -1,0,1,-1,1,-1,0,1 };

int numSafeValid(vector<string>& grid) {

 int res = 0; // 1 pt

 for (int i=0; i<grid.size(); i++) { // 1 pt

 for (int j=0; j<grid[0].size(); j++) { // 1 pt

 if (grid[i][j] == '*') continue; // 2 pts

 int bombs = 0; // 1 pt

 for (int z=0; z<DX.size(); z++) { // 1 pt

 int newX = i + DX[z]; // 2 pts

 int newY = j + DY[z]; // 2 pts

 if (newX < 0 || newY < 0 || newX >= grid.size() ||

 newY >= grid[0].size()) // 4 pts

 continue;

 if (grid[newX][newY] == '*') bombs++; // 3 pts

 }

 if (bombs <= 2) res++; // 2 pts

 }

 }

 return res; // 1 pt

}

5) (25 pts) Complete the program below so that it prints out each possible 3 x 3 Magic Square

which store the integers 1, 2, 3, 4, 5, 6, 7, 8 and 9. A Magic Square is one such that each row,

column and diagonal add to the same value. In writing your code, do NOT use the fact that this

sum has to be 15. Instead, use the first row of the filled in square as the desired target. Note:

the permutation array will store integers 0 through 8, so instead, we’ll check this for a

different target but when we print the square, we’ll add 1 to each item in the permutation.

Finally note that this solution does NOT use any backtracking.

using namespace std;

#include <bits/stdc++.h>

// Indexes of each row, column and diagonal of a 3 x 3 matrix

// stored in a 1D vector.

const vector<vector<int>> LISTS = {{0,1,2}, {3,4,5}, {6,7,8}, {0,3,6},

 {1,4,7}, {2,5,8}, {0,4,8}, {2,4,6}};

const int S = 3;

const int N = S*S;

void go(vector<int>& perm, vector<bool>& used, int k);

bool valid(vector<int>& perm);

void print(vector<int>& perm);

int main() {

 vector<int> perm(N);

 vector<bool> used(N, false);

 go(perm, used, 0);

 return 0;

}

void go(vector<int>& perm, vector<bool>& used, int k) {

 if (k == perm.size()) {

 if (valid(perm))

 print(perm);

 return;

 }

 for (int i=0; i<perm.size(); i++) {

 if (used[i]) continue; // 2 pts

 perm[k] = i; // 2 pts

 used[i] = true; // 2 pts

 go(perm, used, k+1); // 2 pts

 used[i] = false; // 2 pts

 }

}

// Returns true iff this permutation is a valid 3 x 3 Magic Square

// Make use of LISTS!!! Returns false otherwise.

bool valid(vector<int>& perm) {

 int sum = 0; // 5 pts for initial sum

 for (int i=0; i<LISTS[0].size(); i++)

 sum += perm[LISTS[0][i]];

 for (int i=1; i<LISTS.size(); i++) { // 2 pts

 int tmp = 0; // 5 pts set I sum

 for (int j=0; j<LISTS[i].size(); j++)

 tmp += perm[LISTS[i][j]];

 if (tmp != sum) // 2 pts

 return false;

 }

 return true; // 1 pt

}

void print(vector<int>& perm) {

 for (int i=0; i<S; i++) {

 for (int j=0; j<S; j++)

 cout << perm[S*i+j]+1 << " ";

 cout << endl;

 }

 cout << endl;

}

6) (5 pts) What animal appears on the Panda Express logo?

Panda (Grading: Give to All)

