
SI@UCF Java Course Test #1 Solutions

June 14, 2019

1. (12 pts) Write a program that simulates a two player game with dice. Both players are to roll a

pair of fair standard six-sided dice. Print out the value shown on each die for both players. The

winner is the person who rolled a higher sum. Print out who the winner is, or if both players

rolled the same sum, print out that the game was a tie. Please use the variables given to you, and

you can also define other variables to use.

import java.util.*;

public class dicegame {

 public static void main(String[] args) {

 Random randGen = new Random();

 int p1Die1, p1Die2, p2Die1, p2Die2;

 p1Die1 = 1 + randGen.nextInt(6);

 p1Die2 = 1 + randGen.nextInt(6);

 p2Die1 = 1 + randGen.nextInt(6);

 p2Die2 = 1 + randGen.nextInt(6);

 int p1Score = p1Die1 + p1Die2;

 int p2Score = p2Die1 + p2Die2;

 if (p1Score > p2Score)

 System.out.println("Player 1 won!");

 else if (p2Score > p1Score)

 System.out.println("Player 2 won!");

 else

 System.out.println("Game was a tie.");

 }

}

Grading: 4 pts for dice generation, 2 pts for totaling dice,

 2 pts for each branch of the if

2. (8 pts) Let the variable x be a double that stores an angle (in radians). Write a line of code to

print out the value of ecos(x) using the appropriate methods from the Math library (list included at

the end of the exam).

System.out.println(Math.exp(Math.cos(x)));

Grading: 2 pts print, 2 pts Math.exp, 2 pts Math.cos, 2 pts x

3. (15 pts) Write a static method called shuffle that takes in two String objects str1 and str2,

both guaranteed to be of even length, splits both of them into two halves (left and right), and

returns the string that is the concatenation of the left half of the first string, followed by the left

half of the second string, followed by the right half of the first string and then followed by the

right half of the second string. For example if str1="computer" and str2="programs",

then your method should return the string "compproguterrams". Please fill in the method

given below:

// Pre-condition: str1, str2 are both of even length.

// Post-condition: returns str1, str2 shuffled as described

// above

public static String shuffle(String str1, String str2) {

 String str1Left = str1.substring(0, str1.length()/2);

 String str1Right = str1.substring(str1.length()/2);

 String str2Left = str2.substring(0, str2.length()/2);

 String str2Right = str2.substring(str2.length()/2);

 return str1Left + str2Left + str1Right + str2Right;

}

Grading: 3 pts for each substring, 3 pts to paste back together.

Consider creating a class to store a domino. A domino is a playing piece that contains a certain

number of dots on one side (in between 1 and 9 inclusive), and another number of dots on the

other side. For clarity, we'll call the sides left and right. An incomplete version of the class is

included below. The next four problems (5 – 8) will be to add methods to this class, and question

9 will ask you to use the class.

public class Domino {

 private int left;

 private int right;

 public Domino(int l, int r) {

 left = l;

 right = r;

 }

 public Domino(Random r) {

 left = Math.abs(r.nextInt()%9) + 1;

 right = Math.abs(r.nextInt()%9) + 1;

 }

 public String toString() {

 return " ["+left+ ", "+right+ "]";
 }

}

4) (10 pts) Add a constructor to the Domino class that takes in a single integer and sets both the

left and right side to have that many dots.

public Domino(int dots) {

 left = dots; // Grading: 5 pts each line, Give 3 pts for a

 right = dots; line that is backwards, 0 otherwise

}

5) (10 pts) Add a method flip to the Domino class that changes the current object by exchanging

the number of dots on the left and right side. For example, if the object the method is called upon

has 3 dots on the left and 5 on the right before the method call, right after the method call the

object would have 5 dots on the left and 3 on the right.

public void flip() {

 int temp = left; // 4 pts

 left = right; // 3 pts

 right = temp; // 3 pts

}

6) (10 pts) Add a method compareTo to the Domino class so that it returns an integer. In

particular it will return the difference in the total number of dots on the current object with the

object d, which is passed in as a parameter. (Thus, a negative integer is returned if the current

object has fewer dots, 0 is returned if they have the same number of dots, and a positive integer

is returned if the current object has more dots than d.

public int compareTo(Domino d) {

 return this.left + this.right - d.left - d.right;

 // Grading: 2 pts return 2 pts each term and sign together

}

7) (15 pts) Add a method match to the Domino class and determines whether or not the current

object matches a Domino d. Two dominos match if the number of dots on one side of the first

domino is equal to the number of dots on one side of the second domino. (For example, the

domino [2,7] matches [7,3] and the domino [1,5] matches [1,8], but domino [4,5] does NOT

match [3,6].)

public boolean match(Domino d) {

 // 5 pts for first two cases.

 if (this.left == d.left || this.left == d.right)

 return true;

 // 5 pts for next two cases.

 if (this.right == d.left || this.right == d.right)

 return true;

 // 5 pts for false case.

 return false;

}

8) (15 pts) Write a code segment in the draw function to create a set of 13 horizontal stripes that

are alternating between yellow and black, starting with yellow. The stripes should be 400 pixels

long and 20 pixels wide. The Graphics class methods and Color class constants that are

necessary are provided below. (Note: x is measured to the right and y is measured down.)

abstract void fillRect(int x, int y, int width, int height)

Fills the specified rectangle.

abstract void setColor(Color c)

Sets this graphics context's current color to the specified color.

static Color YELLOW

The color yellow.

static Color BLACK

The color black.

public void draw(Graphics g) {

 g.setColor(Color.WHITE);

 g.fillRect(0, 0, 500, 500);

 int y = 120;

 for (int i=0; i<13; i++) { // 2 pts

 if (i%2 == 0) // 3 pts

 g.setColor(Color.YELLOW); // 1 pt

 else // 1 pt

 g.setColor(Color.BLACK); // 1 pt

 g.fillRect(50, y, 400, 20); // 5 pts

 y += 20; // 2 pts

 }

}

9) (5 pts) Food from what country is served at Café de France? France (5 pts give to all)

https://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html#fillRect(int,%20int,%20int,%20int)
https://docs.oracle.com/javase/7/docs/api/java/awt/Graphics.html#setColor(java.awt.Color)
https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html
https://docs.oracle.com/javase/7/docs/api/java/awt/Color.html#GREEN

