
2013 BHCSI Object-Oriented Design in Python

Test #2 (100 points) Solutions

7/24/2013

1) (15 pts) Complete the program below so that it reads in a sentence entered on a line by

itself by the user and reports the number of words in the sentence and the length of the

longest word in the sentence.

def main():

 sentence = input(“Please enter your sentence.\n”)

 tokens = sentence.split() # 3 pts

 numWords = len(tokens) # 3 pts

 numChars = len(tokens[0]) # 1 pt

 for i in range(len(tokens)): # 3 pts

 if len(tokens[i]) > numChars: # 3 pts

 numChars = len(tokens[i]) # 2 pts

 print(“Your sentence has”, numWords, “words.”)

 print(“The longest word has”, numChars,”characters.”)

main()

2) (10 pts) The Lucas numbers are defined as follows: L1 = 1, L2 = 3, Ln = Ln-1 + Ln-2 for

all n > 2. (Thus, the next few Lucas numbers are 4, 7, 11 and 18.) Write a recursive

function that takes in n and returns the n
th

 Lucas number. You may assume n is a positive

integer.

def lucas(n):

 if n == 1: # 1 pt

 return 1 # 1 pt

 elif n == 2: # 1 pt

 return 3 # 1 pt

 else: # 1 pt

 return lucas(n-1) + lucas(n-2) # 5 pts

3) (12 pts) Complete the following function that takes in a list of numbers and returns the

product of all of the numbers in the list.

#Takes a list of numbers and returns the product

def multiply(numbers):

 product = 1 # 2 pts

 for i in range(len(numbers)): # 4 pts

 product = product*numbers[i] # 4 pts

 return product # 2 pt

4) (12 pts) What is the output produced by the following code segment:

def func(n):

 if n < 5:

 print(n, end=” “)

 else :

 print(n%5, end=” “)

 func(n//5)

func(67)

print()

func(116)

2 3 2

1 3 4 (2 pts each number)

5) (10 pts) What will the following code segment print (Don’t worry about ordering for the last

line)?

x = {'Pie':'Dog', 'Bro': 'Bacon', 'John':'Asia', 'Eggs':'Ralph'}

if 'Ralph' in x:

 print("Hello Ralph!")

if 'John' in x:

 print("John is here!")

print(x['Pie'])

for i in x:

 print(i, end = ' ')

John is here! # 2 pts, 2 pts for not having Ralph

Dog # 2 pts

Bro Eggs John Pie # 1 pt each

6) (13 pts) Complete the recursive function below that it prints all odometer readings of

length n that have digits in strictly increasing order with the prefix current.

def printIncOdometer(n, current):

 if len(current) == n:

 print(current)

 return

 start = 0

 if len(current) > 0 : # 1 pt

 start = int(current[len(current)-1])+1 #6 pts

 for i in range(start ,10): # 2 pts

 printOdometer(n , current+str(i))

 #1pt 3 pts

7) (25 pts) Write a function that takes in two dictionaries that map items to prices and

returns a new “merged” dictionary that contains each item in either dictionary. If an item

is contained in exactly one of the dictionaries, keep its price as stated. If an item is

contained in both dictionaries, in the merged dictionary set its price to the minimum of

the two prices. Remember, you should NOT make any changes to either of the two

existing dictionaries. Instead, you’ll create a third new dictionary and add to it all unique

items from the two input dictionaries, setting the prices as previously mentioned.

def makeMergedPriceList(priceListA, priceListB):

 ans = {} # 2 pts

 for item in priceListA.keys(): # 4 pts

 ans[item] = priceListA[item] # 4 pts

 for item in priceListB.keys(): # 4 pts

 if (not item in ans.keys()) or priceListB[item] < ans[item]:#6p

 ans[item] = priceListB[item] # 4 pts

 return ans # 1 pt

8) (3 pts) What items are primarily sold at Books-A-Million?

Books (3 pts)

