
SI@UCF Introduction to Programming in Python

Test #2 Solution

July 21, 2014

1) (15 pts) What is the output of the following segment of code?

str = "ABCDEFGHIJ"

print(str[2:7])

print(str[:8])

print(str[3:])

print(str[-6:-2])

print(str[:-5])

CDEFG

ABCDEFGH

DEFGHIJ

EFGH

ABCDE (Grading: 3 pts each, 2 pts if off by 1, 1 pt if off on

both ends)

2) (15 pts) What is the output of the following segment of code?

a = 1

b = 2

c = a + b

for i in range(5):

 print("a =",a,"b =",b,"c =",c)

 a = b

 b = c

 c = a + b

a = 1 b = 2 c = 3

a = 2 b = 3 c = 5

a = 3 b = 5 c = 8

a = 5 b = 8 c = 13

a = 8 b = 13 c = 21

Grading: 1 pt per number, no exceptions.

3) (15 pts) Write a segment of code that determines (and prints out) the smallest value of n such

that the sum 1 + 1/2 + 1/3 + 1/4 + 1/5 + … + 1/n > 6.

total = 0 # 2 pts

term = 0 # 1 pt

while total <= 6: # 3 pts

 term = term + 1 # 3 pts

 total = total + 1/term # 4 pts

print(term) # 2 pts

4) (15 pts) Write a segment of code that prompts the user to enter a secret number. Continue doing

so until the guess they make is exactly 20 higher than the last guess they made. At this point, tell

them that they've won. (Thus, one must play at least 2 turns to win.)

prevnum = int(input("Enter your first guess.\n"))

nextnum = int(input("Enter your next guess.\n"))

while nextnum – prevnum != 20:

 prevnum = nextnum

 nextnum = int(input("Enter your next guess.\n"))

print("You win!")

Grading: 3 pts for each line except the last.

5) (15 pts) A perfect number is a number whose sum of proper divisors is equal to the number

itself. For example, 6 is a perfect number since all of the numbers that divide into it that are less

than it add to 6: 1 + 2 + 3 = 6. A second example of a perfect number is 28, since 1 + 2 + 4 + 7 +

14 = 28. Write a program that prints out all of the perfect numbers less than 10000. (Note: On the

off hand chance that you have these memorized, please don't just write print statements to print

these out. You won't get credit for doing so. Please solve this the intended way, with loops that

check each number from 1 to 10000 for the desired property.)

def main():

 for num in range(1,10001):

 total = 0

 for i in range(1,num):

 if num%i == 0:

 total += i

 if total == num:

 print(num)

main()

6) (9 pts) Roughly how many times is the code segment below going to print "Go Knights!"? Give

some proof for your answer.

n = 1000000

while n > 0:

 print("Go Knights!")

 n = n//2

This runs roughly 20 times. Each time, n is getting divided by 2, until it reaches 0. This is the

same as starting at 1 and multiplying by 2 until reaching a million. Since 220 is slightly more

than a million, we can ascertain that this runs either 20 or 21 times.

Grading: 5 pts for being in the right ballpark, 4 pts for the reasoning

7) (15 pts) A simple formula for the height of an object dropped from Y feet high t seconds after

its dropped (on Earth) is f(t) = Y - 16t2. Fill in the program below so that it prints out a chart of the

height of an object after each second, starting with t = 0. The user will enter the initial height. The

last line should print a height of 0, regardless of what the mathematical equation says, since the

object won't fall below the ground.

def main():

 height = int(input("Enter the initial height.\n"))

 t = 0;

 saveheight = height # 3 pts

 print("Time\tHeight")

 while height > 0:

 print(t,"\t",height)

 t = t + 1 # 4 pts

 height = saveheight – 16*t*t # 5 pts

 print(t,"\t",0) # 3 pts

main()

8) (1 pt) In what shape are the individual pieces of the popular cereal Froot Loops?

Loops

