2013 SI@UCF Object-Oriented Programming in Python Test #1 Solutions

Date: 7/15/2013

1) (10 pts) Fill in the following class definition. The __init__ function should set self.color to the color parameter and self.miles to the miles parameter.  The drive function should make self.miles incremented by additional_miles.  

class Car:
    
    def __init__(self, color = "black", miles = 0):
        self.color = color		(3 points)
        self.miles = miles		(3 points)



    def drive(self, additional_miles):
        self.miles += additional_miles		(4 points)




2) (5 pts) What is the output of the following code segment?  

number1 = 7
number2 = 5

if (number1 - number2 > 0 and number1 == 7):
    if (number2 > number1 or number2 < 8):
        print("Oranges")
    else:
        print("Orangutan")
else:
    print("Salad")


Output: Oranges (5 points for Oranges and 0 points for anything else)




3) (15 pts) Complete the following function definition.  This function should return the value of the base parameter raised to the exponent parameter.  As an example, the value of power(2, 4) is 16 because 24 = 16.  Note: You may NOT use the ** operator or call the pow function. You must use a loop and use multiplication. (You only need to worry about positive, integer exponents).  

def power(base, exponent):
    answer = 1
    for i in range(exponent):
        answer *= base
    return answer

(3 points for initializing answer)
(5 points for looping construct)
(5 points for updating answer)
(2 points for return)


4) (5 pts) What is the output of the following code segment?  

class SnorMax:
    
    def __init__(self, hours_rested=2):
        self.hours_rested = hours_rested
        
    def sleep(self, hours):
        self.hours_rested += hours
        
small_bear = SnorMax()
small_bear.sleep(5)
print(str(small_bear.hours_rested))


Output: 7  (5 points for 7, 2 points for 5)


5) (5 pts) Will the following code segment ever complete execution?  Why or why not?

countdown = 10
while (countdown > 0):
    print(str(countdown) + " second(s) until launch.")

print("We have lift off.")


Answer: countdown is never decremented -> infinite loop
(5 points for something relating to infinite loop, 0 points for anything else)

6) (15 pts) Write a segment of code that simulates rolling a pair of fair six-sided dice 1000000 times and reports the sum of all those rolls as well as the number of times snake-eyes (a sum of 2 on the pair of dice) was rolled out of the million times.

import math
sum = 0
snake = 0
for i in range(1000000):
	total = math.randint(1,6) + math.randint(1,6)
	if (2 == total):
		snake += 1
	sum += total

print(“sum is “+ str(sum))
print(“snake-eyes is “ + str(snake))

(2 points for initializing counters)
(2 points for loop)
(4 points for getting total in some way)
(4 points for checking for snake-eyes)
(2 points for updating sum)
(1 point for printing)





7) (15 pts) What is the output of the following segment of code?

str = "ABCDEFGHIJ"
print(str[2:7])
print(str[:8])
print(str[3:])
print(str[-6:-2])
print(str[:-5])


CDEFG
ABCDEFGH
DEFGHIJ
EFGH
ABCDE

(3 points per line)


8) (25 pts) Complete the money class shown below, that stores the dollars and cents for an amount of money as integers.

class money:

    def __init__(self, dollars=0, cents=0):
        self.dollars = dollars + cents//100
        self.cents = cents%100

    # amount is a money object, this amount should be
    # subtracted out of self, and self should be adjusted
    # accordingly.
    def spend(self, amount):
		self.cents -= amount.cents
		if (self.cents < 0):
			self.dollars -= 1
			self.cents = 100 + self.cents
		self.dollars -= amount.dollars

		(2 points for subtracting cents)
		(6 points for checking and fixing negative cents)
		(2 points for subtracting dollars)


    # amount is a money object, this amount should be
    # added to self, and self should be adjusted
    # accordingly.
    def add(self, amount):
		self.cents += amount.cents
		if (self.cents > 99):
			self.cents %= 100
			self.dollars += 1
		self.dollars += amount.dollars

		(2 points for adding cents)
		(6 points for checking and fixing extra cents)
		(2 points for adding dollars)

    # Returns the number cents self is worth. (ie $2.34 should
    # return 234.
    def numCents(self):
		return str(100*self.dollars + self.cents)

		(5 points for correct)


[bookmark: _GoBack]9) (5 pts) For what breakfast food is Dunkin Donuts known?  Donuts
