2013 BHCSI Algorithms in C#

Test #2 (100 points) Solution
7/24/2013

1) (18 pts) What is the output of the following code, which executes an instance of the Knapsack algorithm?
static void Main(string[] args) {

 int[] memo = {-1,-1,-1,-1,-1, -1, -1};

 memo[0]=0;

 int[] weight = {1,2,10,5,4,3};

 int[] value = {10,20,1000000,75,68,50};

 for(int item = 0; item < 6; item++) {

 for(int sack = 6-weight[item]; sack >= 0; sack--) {

 if(memo[sack]!=-1) {

 memo[sack+weight[item]] = Math.Max(memo[sack+weight[item]],

 memo[sack]+value[item]);

 }

 }

 for(int v = 0; v <= 6; v++)

 Console.Write("{0} ", memo[v]);

 Console.WriteLine();

 }

 Console.WriteLine("A knapsack of size 6 can hold up to {0} dollars!",memo[6]);

}

0 10 -1 -1 -1 -1 -1

0 10 20 30 -1 -1 -1

0 10 20 30 -1 -1 -1

0 10 20 30 -1 75 85

0 10 20 30 68 78 88

0 10 20 50 68 78 88

A knapsack of size 6 can hold up to 88 dollars!
Grading: 2 pts for row 1, 3 pts for the rest of the rows, and 1 pt for the last slot.
2) (12 pts) Determine the number of ways to make change for 11 cents using 2 cent, 3 cent, 4 cent and 7 cent coins. In order to get full credit, please complete the chart below using the algorithm shown in class.

	Num Cents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	2
	0
	1
	0
	1
	0
	1
	0
	1
	0
	1
	0

	3
	0
	1
	1
	1
	1
	2
	1
	2
	2
	2
	2

	4
	0
	1
	1
	2
	1
	3
	2
	4
	3
	5
	4

	7
	0
	1
	1
	2
	1
	3
	3
	4
	4
	6
	6

Grading: 3 pts for each row
For questions 3 and 4, you will perform a depth first search and breadth first search on the modified grid below, starting at square (0,0). Squares containing an X can not be visited. Squares containing a T are teleport squares. Each teleport square has two possible neighbors to visit. These will be explicitly listed below. From all other squares (x,y), you may visit the neighbors (x-1, y), (x, y-1), (x+1, y) and (x, y+1), so long as those square can be visited. In the case of choosing between neighbors in either algorithm, always choose the one with the minimum x coordinate first. If there are multiple such neighbors, choose the one with the minimum y coordinate first.

Here is the grid, with (0,0) in the lower left corner, (4,0) in the lower right corner, (0, 4) in the upper left corner and (4, 4) in the upper right corner.

	
	
	X
	T
	

	X
	
	
	X
	

	X
	
	
	X
	

	
	T
	
	X
	

	
	
	
	X
	T

T(1,1): can move to (2,3) and (4,4)

T(4,0): can move to (0,4) and (2,2)

T(3,4): can move to (0,1) and (4,0)

3) (12 pts) Show the order that the grid squares get visited, starting from (0,0), in a depth first search, using the rules above:

1.(0, 0)
4. (2, 3)
7. (2, 2)
10. (1, 0)
13. (4, 4)
16. (4, 3)
2. (0, 1)
5. (1, 3)
8. (2, 1)
11. (1, 4)
14. (3, 4)
17. (4, 2)
3. (1, 1)
6. (1, 2)
9. (2, 0)
12. (0, 4)
15. (4, 0)
18. (4, 1)
4) (12 pts) Show the order that the grid squares get visited, starting from (0,0), in a breadth first search, using the rules above:

1. (0, 0)
4. (1, 1)
7. (4, 4)
10. (2, 2)
13. (1, 2)
16. (4, 2)
2. (0, 1)
5. (2, 0)
8. (2, 1)
11. (3, 4)
14. (1, 4)
17. (0, 4)
3. (1, 0)
6. (2, 3)
9. (1, 3)
12. (4, 3)
15. (4, 0)
18. (4, 1)
Grading: Get score out of 18, multiply by 2/3 and round, for each part.

5) (18 pts) Run Dijkstra’s algorithm starting at vertex A on the graph with the adjacency matrix shown below. Note: If an element is blank in the matrix, assume no edge exists between the two corresponding vertices.

	
	A
	B
	C
	D
	E
	F
	G

	A
	0
	
	10
	
	15
	
	3

	B
	
	0
	
	8
	5
	16
	

	C
	
	
	0
	3
	
	20
	

	D
	
	
	
	0
	7
	8
	

	E
	
	
	
	
	0
	5
	

	F
	
	
	
	
	
	0
	

	G
	
	4
	5
	10
	
	
	0

In the chart below, on each row indicate the new vertex added to the set S. In the rest of the row, indicate the updated estimate of the shortest distance to each vertex. You need to only fill this in for vertices not yet in the set S.
	Estimates
	A
	B
	C
	D
	E
	F
	G

	A
	0
	inf
	10
	inf
	15
	inf
	3

	G
	0
	7
	8
	13
	15
	inf
	3

	B
	0
	7
	8
	13
	12
	23
	3

	C
	0
	7
	8
	11
	12
	23
	3

	D
	0
	7
	8
	11
	12
	19
	3

	E
	0
	7
	8
	11
	12
	17
	3

Grading: 3 pts for each line, give partial if you deem necessary
6) (10 pts) Execute Prim’s Algorithm to find the Minimum Spanning Tree of the graph whose edges are given below, starting at vertex C. Please list each edge considered. If an edge is not placed in the MST, list the cycle that would be formed by adding that edge.

AB = 3

AF = 17
AG = 8
AH = 12

BD = 7

BE = 4

BG = 5

CD = 9

CF = 13
CH = 11

DE = 14
DF = 8

DG = 9
DH = 6

EG = 10
EH = 5

FH = 15, Grading: 1 pt for each Yes row, 3 pts for the no row
	Edge Considered
	Added? (Yes/No)
	If no, cycle formed

	CD
	Yes
	

	DH
	Yes
	

	EH
	Yes
	

	BE
	Yes
	

	AB
	Yes
	

	BG
	Yes
	

	BD
	No
	BEHDB

	DF
	Yes
	

7) (15 pts) You are attempting to create teams for the upcoming hackathon. Each team will consist of 2 students and you know that teams that have a total talent level of 100 or higher will advance to the next level. Given the talent level of each student at your school, devise an algorithm to maximize the number of pairs you choose with a talent level of 100 or higher. What is the run time of your algorithm on an input list of size n? Execute your algorithm on a set of students whose talent levels are listed below:

86, 31, 99, 14, 55, 39, 32, 27, 61, 72, 5, 19, 81, 2, 76, 23, 64, 35, 45, 56

Here is a greedy algorithm to solve the problem:

1) Sort the data. (3 pts)

2) Start one index at the high end of the array (highPtr) and another at the low end of the array (lowPtr).

3) From here, the general strategy is to greedily pair each individual with the highest talent with the lowest possible person while still meeting the 100 threshold, and repeating until no more pairs can be formed. We can do this efficiently as follows: (6 pts)

4) count = 0

5) while lowPtr < highPtr

a) while lowPtr < highPtr and array[lowPtr]+array[highPtr] < 100

i) lowPtr = lowPtr + 1

b) if (lowPtr < highPtr) count = count + 1

c) lowPtr = lowPtr + 1

d) highPtr = highPtr - 1

6) return count

The reason this works is because we want to pair up our best people first, since they have the best chance of being on a talented team. Next, any competing pairing can't beat the one where we choose a "minimal" pairing, where we minimize a particular person's partner. Thus, this algorithm can't be beat by another. (It can be matched, of course.) This runs in O(nlgn) time, due to the sorting. The second part of the algorithm runs in O(n) time. (1 pt)

Sorting our data, we have:

2, 5, 14, 19, 23, 27, 31, 32, 35, 39, 45, 55, 56, 61, 64, 72, 76, 81, 86, 99
The Pairs: (99, 2), (86, 14), (81, 19), (76, 27), (72, 31), (64, 39), (61, 45), (56, 55). (4 pts)
Maximum Number of Pairs = 8 (1 pt)
8) (3 pts) What items are primarily sold at Books-A-Million? Books
