
Seventh Annual
University of Central Florida

acm Y n E

High School Programming
Tournament

Problems
Problem Name

How Many Zeroes?
Cross Words

Mind Your PQs
Interesting Intersections

Dave's Socks
It Makes No Difference in the End

Orthogonal Latin Squares
Found in the Shuffle

Rot 13 Encryption
The 1 5-Puzzle

Filename

ZEROES
CROSS
PQUEUE
SEGMENT
SOCKS
SUBTRACT
LATIN
DECK
THIRTEEN
PUZZLE

Call your program file: Filename.PAS or Filename.C
Call your input file: Fi1enarne.N

For example, if you are solving Found in the Shuffle:

Call your program file: DECKPAS or DECK.C
Call your input file: DECK.IN

How Many Zeroes?
Filename: -ZEROE s

Factorial is an operation defined for integers greater than or equal to zero by the following
formula:

where n is a non-negative integer.

The Problem:

Given a non-negative integer n, determine the number of zeroes at the end of the expansion of n!.
Here are some examples:

n - n ! - Number of zeroes at end
4 24 0
5 120 1
7 5 040 1

The Input:

There will be several data sets. Each set consists of one line of input, containing n.

The Output:

For each input data set, output one of the following messages, whichever is appropriate:

There i s 1 ze ro a t t h e end of n ! .
There a r e x ze roes a t t h e end of n ! .

where x and n are the appropriate values.

Sample Input: I Sample Output:

There a r e 0 zeroes a t t h e end of 4 ! .
There i s 1 zero a t t h e end of 5 ! .
There i s 1 zero a t t h e end of 7 ! .

Cross Words
Filename: CROS S

A word cross is formed by taking two words and intersecting them on a common letter, so
that the first word appears horizontally while the second word appears vertically. In a
leading word cross, the common letter of intersection always occurs as far to the left as
possible in the horizontal word. The vertical word then intersects the horizontal word on
this same letter, as near as possible to the top of the vertical word.

The Problem:

Given two pairs of words, display them as side-by-side leading word crosses. If this is not
possible for the given words, print a message that says so.

The Input:

There will be an unknown number of word sets in the input. Each word set will consist of
four words, with one word per line. A word will consist of one to ten uppercase letters.

The Output:

Your output will consist of two leading word crosses for each input word set, if both can be
formed. The first cross will contain the first pair of words in the word set, and the second
cross will contain the second pair. In each pair, the first word is to appear horizontally with
the second crossing it vertically. The two horizontal words are to appear on the same line
of output, separated by exactly two spaces. The first character of the first horizontal word
must be in the first column of the output.

If one or both of the word crosses cannot be formed for the given word set, print the
message:

Cannot cross the words.

There should be exactly one blank line between the output for different word sets.

Sample Input:

ALTER
POLARITY
NEUTRON
FLOW
CHEESECAKE
MATCHES
PICNIC
EXCUSES
PEANUT
BANANA
VACUUM
GREEDY

Sample Output:

P
0 F
L L
ALTER NEUTRON
R W
I
T
Y

M
A E
T X
CHEESECAKE PICNIC
H U
E S
S E

S

Cannot cross the words.

Mind Your PQs
Filename: PQUEUE

One way to organize data is with a PQ, or priority queue. A PQ is an organized collection of
data that is accessed only through certain operations. A data element is added to a PQ by the
INSERT operation. The REMOVE operation chooses the data element in the PQ with the least
value, and removes it fiom the PQ. A REMOVE operation is valid only when the PQ is not
empty.

The Problem:

Implement a PQ whose data elements are integers.

The Input:

There will be several data sets, each representing a series of operations on a PQ. Each data set
will contain several lines, which will have one of the following forms:

INSERT m m
REMOVE

where num is an integer to be added to the PQ. There is exactly one space between INSERT and
num. All operations will be valid, and there will be no more than 100 elements in a PQ at a time.
The end of a data set for a given PQ will be denoted by a line of the following form:

END

The Output:

Output each integer REMOVED from a PQ. Print one integer per line, left justified. Separate the
output from different PQs by a blank line.

Sample Input:

INSERT 4
INSERT 1 0
INSERT 3
REMOVE
REMOVE
REMOVE
END
INSERT 100
REMOVE
INSERT 50
REMOVE
END

I Sample Output:

Interesting Intersections
Filename: SEGMENT

The Problem:

Given a circle and a line segment, determine whether the line segment intersects the
circle.

The Input:

There will be several data sets. Each data set will consist of exactly two lines of input.
The first line will contain three real numbers x, y, and r, where the point (x, y) is the
center of the circle and r is its radius (r will be positive). The second line will contain
four real numbers x,, y,, x,, and y,, where (x , , y,) and (x,, y,) are the endpoints of the line
segment. (x,, y,) and (x,, y,) will not be the same point.

The Output:

For each data set, print one of the following messages, whichever is appropriate:

The line segment intersects the circle.
The line segment does not intersect the circle.

Sample Input:

Sample Output:

The line segment does not intersect the circle.
The line segment intersects the circle.

Dave's Socks
Filename: SOCKS

Dave likes to wear mismatched socks. In fact, he refuses to wear socks that match. This
sometimes means that he must plan his wardrobe days in advance. For example, suppose Dave
has 1 Red sock, 1 Green sock, and 2 Blue socks left in his drawer. If he wears the Red and Green
socks today, then tomorrow he is left with matching Blue socks, which makes him unhappy.
Thus, he must wear one Blue sock today in order to have a mismatched set tomorrow. Dave
always wears a clean pair of socks, and doesn't do laundry until all of his socks have been worn.

The Problem:

Given the contents of Dave's sock drawer, produce a day-by-day plan of how he could wear the
socks, always mismatched, until they have all been worn. If this isn't possible, produce a message
to this effect.

The Input:

There will be several input sets. Each set will begin with a line containing a single'integer, n, from
1 to 15, indicating the number of different colors of socks currently in Dave's sock drawer. The
next n lines will each contain a positive integer followed by a single space and then a string. The
integer indicates the number of socks of that color, and the string indicates the color. The string
will contain 1 to 20 letters (no numbers, spaces or other characters), and no two colors in any
data set will be the same.

The Output:

For each data set, ifthere is a solution, print the daily plan on consecutive lines. Each line should
contain two colors (as they were input) separated by a space, indicating a mismatched pair of
socks to wear on that day. If no solution is possible, then print the single-line message

Dave can't do it.

Separate the output from consecutive data sets with a blank line.

Sample Input: I Sample Output:

3
1 Red
1 Green
2 Blue
1
2 Lavender

Blue Green
Red Blue

Dave can't do it.

It Makes No Difference in the End
Filename: SUBTRACT

Consider a sequence of four non-negative integers. Each integer is a neighbor of the integers
immediately before it and after it in the sequence. Also, the first and last numbers are neighbors.
The absolute-value differences of neighboring integers can be used to construct a new sequence.
For example, in the sequence 28 1 25 37, the differences are 28-1=27,25-1=24, 37-25=12, and
37-28=9, giving a new sequence of 27 24 12 9. This process can be repeated until all integers in
the new sequence are the same. Once this occurs, all successive sequences will be all zeroes.

The Problem:

Given a sequence of four non-negative integers, determine all successive sequences (obtained by
differences of neighbors, as described above) until all of the integers in the sequence are the same.

The Input:

There will be several sequences in the input. Each sequence will consist of four non-negative
integers, all on one line, separated by spaces.

The Output:

For each input sequence, output the original sequence followed by all successive sequences, one
sequence per line. The first integer in each sequence should be the difference of the first two
numbers of the previous sequence. Print each integer right-justified in a five-character field.
Separate the output for different input sequences by a blank line.

Sample Input:

Sample Output:

Orthogonal Latin Squares
Filename: LAT I N

A Latin Square of size n is an n by n matrix in which each row contains the numbers 1 through
n, and each column also contains the numbers 1 through n. Here are two Latin Squares of size 3:

Two Latin Squares of the same size can be combined to form a matrix of orderedpairs. Each
ordered pair contains a number from a given position in the first Latin Square and the number
fiom the same position in the second Latin Square. For example, the two Latin Squares shown
above would combine into this matrix:

Because these are ordered pairs, the numbers from the first Latin Square will always appear first,
and the pair (2, 1) is not considered to be the same as (1,2). Since all of the ordered pairs in the
above matrix are unique, the Latin Squares are said to be orthogonal. Here are two Latin
Squares of size 3 which are not orthogonal:

All that is needed to prove the Latin Squares are not orthogonal is a single counter-example. For
these Latin Squares, the ordered pair obtained from the upper right comers is (3, 1). However,
the pair obtained fiom the lower left comers is also (3, 1). Therefore they are not orthogonal.

The Problem:

Given two Latin Squares, determine whether or not they are orthogonal.

The Input:

There will be several sets of input data. The first line of each data set will contain a single integer,
n, from 1 to 15, representing the size of the two Latin Squares to be considered. The first Latin
Square will occupy the next n lines of the data set. Each of those lines will contain n integers.
The second Latin Square will follow on the next n lines of the data set, in the same format.

The Output:

For each input set of Latin Squares, output one of the following messages, whichever is
appropriate:

The Latin Squares are orthogonal.
The Latin Squares are NOT orthogonal.

Print the messages on consecutive lines.

Sample Input:

Sample Output:

The Latin Squares are orthogonal.
The Latin Squares are NOT orthogonal.

Pound in the Shuffle
Filename: D E C K

An ordinary deck of playing cards contains 52 cards, each of which has a suit and a value. Most card
games require that a deck be shuffled at the beginning of a play. However, sometimes the deck isn't
shuffled well enough, and there are arrangements of cards in the deck which may cause a bias in the
play. Two such arrangements are a same-suit sequeltce and an ascending sequence. A same-suit
sequence is simply a sequence of consecutive cards in the deck with the same suit. An ascending
sequence is a sequence of consecutive cards in the deck that follow one another in increasing value,
with Ace following King and preceding two. Thus, 2 s 5 s KS 3s AS is a same-suit sequence of length
five, 9C 10D JC QS KH AC 2D is an ascending sequence of length seven, and 2H 3H 4H 5H 6H is
both a same-suit and ascending sequence of length five.

The Problem:

Given a deck of cards, determine the longest ascending sequence and the longest same-suit sequence
present in the deck.

The Input:

The input will consist of a series of decks of cards, each deck occupying two lines with 26 cards per
line. Each card will be represented by a two-character string: the value followed by the suit. Values
will be the characters A for ace, 2- 9 for two through nine, T for ten, J for jack, Q for queen, K for
king. Suits will be S for spades, D for diamonds, H for hearts, and C for clubs.

The Output:

For each input deck, output the messages (each on a separate line):

Longest same-suit sequence: n
Longest ascending sequence: m

where n and m are the appropriate values. Separate the output from different decks by a blank line.

Sample Input:

Sample Output:

Longest same-suit sequence: 5
Longest ascending sequence: 7

Longest same-suit sequence: 3
Longest ascending sequence: 2

Rot13 Encryption
Filename: THIRTEEN

Rot13 encryption is a simple encoding technique. Each letter in a message is replaced by another
letter. The first 13 letters of the alphabet are replaced by the last 13 letters and the last 13 letters
are replaced by the first 13. For example, ABC becomes NOP and XYZ becomes KLM. The
case of each encoded letter is maintained, i.e., ABCxyz becomes NOPklm. In this encoding
technique, only letters are encoded. Punctuation and spacing remain the same in the original and
encoded messages.

The Problem:

Given a message containing several lines of text, produce a properly encoded version of the
message, using the method described above.

The Input:

The input will consist of several lines of text. Each line will contain at least one letter.

The Output:

Output the properly encoded version of the message. All spacing, punctuation, and capitalization
must be the same as in the original message.

Sample Input:

ABC
XYZ
ABCxyz
"Rot13 Encryption" has thirteen letters.
There are thirteen words in this sentence, if you count all of them.

Sample Output:

NOP
KLM
NOPklm
"Ebgl3 Rapelcgvba" unf guvegrra yrggref.
Gurer ner guvegrra jbeqf va guvf fragrapr, vs lbh pbhag nyy bs gurz.

The 15-Puzzle
Filename: PUZZLE

The 15-Puzzle involves a 4-by-4-square box containing 15 square tiles, numbered from 1 through
15, as shown below. Note that one square is left empty.

With the tile arrangement shown, either the 6, 5, 11, or 10 tile may slide into the empty square.
Moving one of those tiles has the effect of "moving" the empty square to a new position.

The Problem:

Given an initial tile arrangement and a list of directions in which the empty square is moved,
produce the final tile arrangement.

The Input:

There will be several data sets, each composed of two parts. The first part specifies an initial tile
arrangement for a 15-Puzzle. The integers 0 through 15 will be given on four lines with four
integers per line. The zero indicates the initial position of the empty square. The second part of
each data set begins with a line containing a single integer, n. The next n input lines will contain a
direction indicating where the empty square is moved. All moves will be valid. Directions will be
specified as one of the following uppercase characters: U (for up), D (for down), L (for left),
and R (for right).

The Output:

For each data set, output the final tile arrangement. Justifjl each number in a field of two
characters and leave one space between columns, as shown in the sample. Use two spaces (not a
zero) to represent the empty square. Leave a blank line between the output for different data sets.

Sample Input:

Sample Output:

