2012 BHCSI Algorithms in Java Test #1 Solutions
7/10/12
 (Note: Assume that java.util.* is imported for all programs.)
1) (10 pts) What is the output of the recursive call Q1(674)? (Q1 is defined below.)
public static void Q1(int n) {
 if (n > 0) {
 Q1(n/2);
 System.out.print(n%2);
 }
}
 1010100010

2) (8 pts) What is the next permutation (using the iterative permutation algorithm) taught, that follows the permutation 4, 6, 8, 7, 5, 3, 2, 1?
 4, 7, 1, 2, 3, 5, 6, 8

3) (15 pts) The permutation function P(n, k) is defined recursively as follows:
P(n, 0) = 1
P(n, k) = P(n, k-1)*(n – k + 1), for all k > 0.
Write a recursive function to calculate P(n, k). You may assume that 0 ≤ k ≤ n.
public static int P(int n, int k) {

if (k==0)

return 1;

return P(n,k-1) * (n-k+1);
}
4) (25 pts) Write a recursive function that determines how many "SOUTH-EAST" paths there are from one square of a two dimensional grid to another square in the two dimensional grid. In particular, a grid will be represented with a two-dimensional boolean array. Index (0,0) will represent the northwest corner of the grid and index (R-1,C-1) will represent the southeast corner of the grid, assuming the size of the array is RxC. A south-east path is one where each "move" is always south or east. Consider the following example grid:
	
	0
	1
	2
	3
	4
	5
	6

	0
	true
	true
	true
	true
	true
	true
	true

	1
	true
	false
	true
	false
	false
	false
	true

	2
	true
	false
	true
	true
	true
	true
	true

	3
	false
	false
	false
	false
	true
	true
	true

In this grid, it's possible to move on a "SOUTH-EAST" path from (0,0) to (3,6) in four ways, one of which is highlighted. However, no "SOUTH-EAST" path exists from (2,0) to (3, 6), since no possible move from (2, 0) exists in either the south or east direction.
public static int countSEPaths(boolean[][] grid, int startR, int startC, int endR, int endC) {

if (!grid[startR][startC])

return 0;

if (startR==endR && startC==endC)

return 1;

int ans = 0;

if (startR < endR)

ans+=countSEPaths(grid,startR+1,startC,endR,endC);

if (startC < endC)

ans+=countSEPaths(grid,startR,startC+1,endR,endC);

return ans;
}
5) (10 pts) Show the result of running the Partition method shown in class on the array below. Use the element stored at index 0 as the partition element. Note: the Partition method was used as part of the Quick Sort.
	Index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Value
	9
	3
	2
	16
	17
	8
	7
	19
	1
	4
	15

	Index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Value
	7
	3
	2
	4
	1
	8
	9
	19
	17
	16
	15

6) (8 pts) Consider doing a merge sort on the array shown below. Show the contents of the array right after the third merge operation.
	Index
	0
	1
	2
	3
	4
	5
	6
	7

	Value
	18
	7
	13
	2
	17
	1
	8
	19

	Index
	0
	1
	2
	3
	4
	5
	6
	7

	Value
	2
	7
	13
	18
	17
	1
	8
	19

7) (19 pts) Consider a version of the "gem game" where you have a list of the number of gems in each pouch, in order from left to right. To play the game, Allie and Ben alternate turns. At each turn, the current player can take either one OR two of the pouches from the left end of the list. The goal of the game is to get the most number of gems. Allie always goes first. Write a recursive function that determines how many more gems Allie gets than Ben, if both play optimally. (Note: this number may be negative, which means that no matter what Allie does, if Ben plays optimally, he'll win.) The input to your recursive function will be the following:
1) The input array, storing the number of gems in each pouch. Index 0 stores the number of gems in the leftmost pouch.
2) An integer, k, representing the next index from which the current player will choose. (Thus, the current player can either take the gems in index k, or both indexes k and k+1, so long as they exist.)
The initial call to the function will be as follows:
int alliescore = compute(array, 0);
Fill in the function prototype provided below:
public static int compute(int[] array, int k) {

if (k==array.length)

return 0;

if (k==array.length-1)

return array[k];

return Math.max(

array[k]-compute(array,k+1),

array[k]+array[k+1] - compute(array,k+2)

);
}
8) (5 pts) In what shape are the individual pieces of the popular cereal Froot Loops?
 Loops =)
