2011 BHCSI Intermediate Java

Test #2 (100 points) Solutions

7/22/11
1) (10 pts) Trace the following segment of code and fill in the final values of the array below. (Note: Uninitialized integer array values in Java default to 0.)

int a[] = new int[10];
for(int i=0; i<30; i+=4){
 int index = i % 10;
 a[index] += i;
}

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	a
	20
	0
	12
	0
	28
	0
	16
	0
	36
	0

Grading: 1 pt per value
2) (10 pts) Write a method that takes in an integer array and a value, and sets each element in that array to that value. The method signature is given below:

public static void initArray(int[] array, int value) {

 for (int i=0; i<array.length; i++) (7 pts – 1 per part)
 array[i] = value; (3 pts, 1 per part)
}

3) (10 pts) Write a static method that takes in two integers (assume these are both positive), and calculates the value of raising the first one to the power of the second one. Note: Do NOT call any methods in the math class.

public static int myPower(int base, int exp) {

 int ans = 1;

(1 pt)
 for (i=0; i<exp; i++) (4 pts)
 ans = ans*base; (4 pts)
 return ans; (1 pt)
}
4) (25 pts) Write a program that asks the user for a positive integer input n, and then creates a two-dimensional integer array of size nxn that stores the integers 1 through n based upon how close to the top and left edges an element is. As an example, here is what the array should store for n = 5:

	1
	1
	1
	1
	1

	1
	2
	2
	2
	2

	1
	2
	3
	3
	3

	1
	2
	3
	4
	4

	1
	2
	3
	4
	5

Part of the program has been filled in for you:

import java.util.*;

public class Square {

public static void main(String[] args) {

Scanner stdin = new Scanner(System.in);

System.out.println("Enter n.");

int n = stdin.nextInt();

int[][] sqr = new int[n][n]; (4 pts)

for (int i=0; i<n; i++) { (5 pts)

for (int j=0; j<n; j++) { (5 pts)

if (i < j)

(5 pts)

sqr[i][j] = i+1;
(3 pts)

else

sqr[i][j] = j+1;
(3 pts)

}

}

for (int i=0; i<n; i++) {

for (int j=0; j<n; j++)

System.out.print(sqr[i][j]+"\t");

System.out.println();

}

}

}

5) (20 pts) Imagine creating a class called Tile which defines an object similar to a Scrabble tile. A Tile object is comprised of one char (the letter on the tile), and one int (the value of the tile). Fill in the constructor and the compareTo method shown below according to the specification given below:

public class Tile implements Comparable<Tile> {

 private char letter;

 private int value;

 // Creates a Tile object with the letter let with a

 // value of val.

 public Tile(char let, int val) {

 letter = let; (2 pts)
 value = val; (2 pts)
 }

 // Returns a negative integer if the value of this tile

 // is less than other, 0 if they have equal value, and a

 // positive integer if this tile has a greater value than

 // other.

 public int compareTo(Tile other) {

 if (this.value < other.value) (3 pts)
 return -1;

 (3 pts)
 else if (this.value == other.value) (3 pts)
 return 0;

 (3 pts)
 else

(1 pt)
 return 1;

(3 pts)
 }

}

Here's another more succinct answer:

 public int compareTo(Tile other) {

 return this.value – other.value;
 }
6) (20 pts) Imagine creating a class called ScrabbleRack that stored one player's tiles for a game of Scrabble. Consider the task of writing a constructor for this class which fills a rack by generating seven random tiles. To make this task easier for you, assume that the following two static method exist in the ScrabbleRack class:

// Precondition: c is a letter.

// Postcondition: The value of c in Scrabble is returned.
public static int getLetterValue(char c);

// Precondition: None

// Postcondition: Returns a random letter from the

// alphabet (uppercase).

public static char getRandomLetter(Random r);

The ScrabbleRack class has one instance variable:

private Tile[] listOfTiles;

Using this information, write a default constructor for the Scrabble Rack class that does the following:

(1) Allocates an array of size 7 for listOfTiles.

(2) Fills each array slot with a new random Tile by appropriately calling the Tile

 constructor.

public Tile() {

 Random r = new Random();

 // Allocate space for the array.

 listOfTiles = new Tile[7]; (5 pts)
 // Loop through each tile.

 for (int i=0; i<listOfTiles.length; i++) {

 // Generate random letter and corresponding value.

 char c = getRandomLetter(r); (5 pts)
 int val = getLetterValue(c); (5 pts)
 // Call constructor to create this tile.

 listOfTiles[i] = new Tile(c, val); (5 pts)
 }

}
7) (5 pts) In which town/city is the "Winter Park Village"

movie theater located?

Winter Park (5 pts)
