Game of Life
Filename: life
The Problem
The Game of Life is a kind of ‘cellular automaton’, because it consists of a collection of separate units, each of which evolves according to a simple set of rules. 
The game consists of a grid of cells, each of which is either alive or dead at any given instant. The next iteration is calculated from the current iteration according to the following four rules:

1. Overcrowding: A living cell dies if it is surrounded by three or more living neighbors.

2. Starving: A living cell dies if it is surrounded by one or fewer living neighbors.

3. Sustaining: A living cell surrounded by two or three living neighbors survives.

4. Birth: A dead cell that is surrounded by exactly three living neighbors comes to life.

You will be given a square grid with an initial configuration. Your job is to simulate the Game of Life and display the grid at each of the next 5 iterations.
The Input
The first line will contain a single positive integer c representing the number of input cases in the file. The c input cases follow. The first line of each input case contains two positive integers, N (1 ≤ N ≤ 10)  indicating the width and height of the square grid, and M (1 ≤ M ≤ 100)  indicating the number of steps to run the simulation. Each of the next N lines for each test case will contain a string of N characters. A period represents a dead cell, and a hash (#) represents a living cell.
The Output
For each test case, print a header with the following format:

Simulation #k:

where k (1 ≤ k ≤ c), represents the input case number. Follow this with a blank line.

Display the grid in the same format as the input, N lines with N characters each, for M iterations. Print a newline between each iteration.
Sample Input File
2

8 2
...##...
..#..#..
.#....#.
#......#
#......#
.#....#.
..#..#..
...##...
2 2
. .

##

Sample Output 
Simulation #1:

...##...



..####..



.#....#.



##....##



##....##



.#....#.



..####..



...##...




..#..#..



..#..#..



##.##.##



..#..#..



..#..#..



##.##.##



..#..#..



..#..#..



Simulation #2:

..

..

..

..

