2007 BHCSI Advanced Java

Test #2 (100 points)

7/20/07

Name : ______________________________

(Note: Assume that java.util.* is imported for all programs.)

1) (50 pts) Finish the three indicated methods in the HeapTest class below, which is intended to implement a heap:

// Arup Guha

// 6/20/05

// Array Implementation of a Heap Class.

public class HeapTest {

 private int[] elements; // Stores the elements of the heap.

 private int size; // The actual number of elements in the heap.

 public final int EMPTY = -1;

 // Creates an empty Heap, initially with 10 possible locations.

 public HeapTest() {

 elements = new int[10];

 size = 0;

 }

 // Creates a heap from an array of unordered values. Runs the

 // makeHeap function.

 public HeapTest(int[] values) {

 // Allocate twice as much space as necessary for the array.

 size = values.length;

 elements = new int[2*(size+1)];

 // Copy in all the values into the elements array. Note that no

 // value is stored in index 0 of the elements array.

 for (int i=0; i<size; i++)

 elements[i+1] = values[i];

 // Percolate Down each necessary element, in backwards order.

 for (int i=size/2; i>0; i--)

 percolateDown(i);

 }

// Insert the element x into the Heap. If the heap is full, false

 // is returned. Otherwise, x is inserted into the Heap and true

 // is returned. The heap is adjusted accordingly.

 public boolean insert(int x) {

 // No more space to insert any elements.

 if (size == elements.length-1)

 return false;

 // Initially place x at the bottom/end of the heap.

 elements[size+1] = x;

 // Percolate this element up so it can find its proper location in

 // the Heap.

 percolateUp(size+1);

 // Adjust the size of the Heap and indicate a successful insertion.

 size++;

 return true;

 }

 }

 // If the heap is empty, EMPTY is returned. Otherwise, the minimum

 // value in the heap is deleted and returned. The heap is adjusted

 // accordingly.

 public int delMin() {

 // No item to return.

 if (size == 0)

 return EMPTY;

 // Store the minimum value to return.

 int retval = elements[1];

 // Place the last element in the first slot.

 elements[1] = elements[size];

 // Percolate this element down to its proper location.

 percolateDown(1);

 // Adjust the size of the Heap and return the minimum element.

 size--;

 return retval;

 }

// Percolates up the element at index i.

 private void percolateUp(int i) {

 boolean done = false;

 // Keep on going if we need to as long as the top of the Heap

 // hasn't been reached.

 while (!done && i > 1) {

 // If the current element is smaller than its parent we must

 // continue.

 if (elements[i] < elements[i/2]) {

 // Swap element i with its parent.

 int temp = elements[i/2];

 elements[i/2] = elements[i];

 elements[i] = temp;

 i = i/2; // Adjust i, and see if we need to continue.

 }

 // The correct location of the element has been found.

 else

 done = true;

 }

 }

 // Percolates down the element at index i.

 private void percolateDown(int i) {

 boolean done = false;

 while (!done && i <= size/2) {

 int minindex = findMinChildIndex(i);

 if (elements[i] > elements[minindex]) {

 int temp = elements[minindex];

 elements[minindex] = elements[i];

 elements[i] = temp;

 i = minindex;

 }

 else

 done = true;

 }

 }

 // Finds the index of the minimum child of the element stored at

 // index i.

 // Precondition: i must be the index of a node with a child.

 private int findMinChildIndex(int i) {

 if (size == 2*i)

 return 2*i;

 if (elements[2*i] < elements[2*i+1])

 return 2*i;

 else

 return 2*i+1;

 }

}

2) (15 pts) Using Kruskals's algorithm, determine a minimum spanning tree (and its weight) of the graph described by the "weighted" adjacency matrix below:

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	8
	6
	12
	(
	(
	(
	(

	B
	8
	0
	3
	9
	15
	7
	(
	4

	C
	6
	3
	0
	5
	4
	8
	12
	10

	D
	12
	9
	5
	0
	6
	(
	(
	11

	E
	(
	15
	4
	6
	0
	4
	9
	7

	F
	(
	7
	8
	(
	4
	0
	13
	14

	G
	(
	(
	12
	(
	9
	13
	0
	11

	H
	(
	4
	10
	11
	7
	14
	11
	0

In your answer below, list the order in which each edge is considered, and whether or not it's added to the MST. Always consider edges that have the same weight in "alphabetical order." Namely, consider edge BF before edge CD. Also, always name edges with the earlier letter first. Thus, don't name an edge FB or DC. List all the edges in the final MST as well as the sum of the weights of those edges. (Note: This adjacency matrix represents and undirected graph. Thus, the edge weight from a vertex X to a vertex Y is the same as the edge weight from vertex Y to vertex X.) Please use the chart below:

	Edge Considered
	Added? (Yes/No)
	Reason Not Added

	BC
	Yes
	

	BH
	Yes
	

	CE
	Yes
	

	EF
	Yes
	

	CD
	Yes
	

	AC
	Yes
	

	DE
	No
	Cycle-CDEC

	BF
	No
	Cycle-BCEFB

	EH
	No
	Cycle-BCEHB

	AB
	No
	Cycle-ABCA

	CF
	No
	Cycle-CEFC

	BD
	No
	Cycle-BCDB

	EG
	Yes
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

MST weight = 35
(Note: You may not use all of the rows provided above.)
3) (10 pts) Determine the minimum number of rooms necessary to schedule all of the following events. Also, give a schedule that lists which events occur in which rooms. (Please number the rooms 1, 2, 3, etc.) Times are given as non-negative integers in between 1 and 300. (Note: You may not use all the rooms or slots provided below.)

	Event
	Start
	End

	A
	200
	275

	B
	101
	201

	C
	0
	100

	D
	50
	150

	E
	145
	210

	F
	150
	200

	G
	95
	165

	H
	210
	280

	I
	80
	149

	J
	160
	180

Room 1: C(0-100), B(101-201), H(210-280)
Room 2: D(50-150), F(150-200), A(200-275)

Room 3: I (80-149), J(160-180)
Room 4: G(95-165)

Room 5: E(145-210)

Five rooms are necessary since events B, D, E, G and I are all occurring at time step 145-146.

4) (20 pts) Using the backtracking technique shown in the text, find one solution for the Four Queens Problem on a 4x4 chess board. In order to receive full credit for this question, you must list each configuration you try and when you backtrack. Start with trying the first queen on row 1, column 1. Then attempt to place a queen in column 2 in one of the remaining valid rows, etc. Each time there is a success, move onto the next column. To enumerate a configuration that you are trying, list a permutation of the numbers 1, 2, 3, 4. (For example the configuration (3,4,1,2) stands for having a queen in row 3 column 1, another in row 4 column 2, a third in row 1 column 3 and the last in row 2 column 4.) To signify that a slot is empty in a configuration, list an X in that slot. Thus, the first configuration attempted is (1, X, X, X) followed by (1, 2, X, X) which is a dead end.

(1, X, X, X)

(1, 2, X, X) dead end

(1, 3, X, X)

(1, 3, 2, X) dead end

(1, 3, 4, X) dead end

(1, 4, X, X)

(1, 4, 2, X)

(1, 4, 2, 3) dead end

(1, 4, 3, X) dead end

(2, X, X, X)

(2, 1, X, X) dead end

(2, 3, X, X) dead end

(2, 4, X, X)

(2, 4, 1, X)

(2, 4, 1, 3) FOUND ONE!

1/2 pt per node...

5) (5 pts) What initials do both Hewlett Packard and Harry Potter share? HP
