2007 BHCSI Advanced Java

Test #1 (100 points)

7/12/07

 (Note: Assume that java.util.* is imported for all programs.)

1) (10 pts) What is the output of the recursive call Q1(4)? (Q1 is defined below.)

public static void Q1(int n) {

 if (n > 0) {

 Q1(n-1);

 System.out.print(n);

 Q1(n-1);

 }

}

121312141213121
2) (15 pts) Write a recursive method that determines the amount of money in a savings account after n years, if the initial investment was d dollars at a simple interest rate of p percent a year. Fill in the prototype below:

public static double calcMoney(double d, int n, double p) {

if (n==0)

return d;

return

calcMoney(d+d*p, n-1, p);
}

3) (25 pts) Imagine writing a game of Checkers where you represent the board as a two dimensional array (size 8x8) of chars. To initialize the board, you need to place '_' characters for each blank square, 'X' characters for the black checkers and 'O' for the red checkers. If you wrote a Checkers class with the instance variable board, write a method initBoard that takes care of allocating the two dimensional array board and then filling in all of the initial squares defined above. (Note: board locations 0,0 and 7,7 both contain checkers, but locations 0,7 and 7,0 are blank. Think of location 0,0 as the top left corner of the board and 7,7 as the bottom right corner of the board.)

public void initBoard() {

 board = new char[8][8];

for (int i=0; i<8; i++)

for (int j=0; j<8; j++)

if (i<3 && (i+j)%2==0)

board[i][j] = ‘X’;

else if (i>4 && (i+j)%2==0)

board[i][j] = ‘O’;

else

board[i][j] = ‘_’;
}
4) (15 pts) Show the result of running the Partition method shown in class on the array below. (Use the element stored at index 0 as the partition element.)

	Index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Value
	12
	3
	14
	5
	17
	13
	8
	19
	2
	5
	20

	Index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Value
	8
	3
	5
	5
	2
	12
	13
	19
	17
	14
	20

5) (30 pts) Write an iterative permutation algorithm that prints out all the permutations of a character array (storing uppercase letters only) Fill in the prototype below:
public static void printPerm(char[] word) {

 // initializations
 int n = word.length;
 int[] perm = new int[n];
 boolean[] dir = new boolean[n];
 for (int i=0; i<n; i++)
 {
 perm[i] = i;
 dir[i] = false; // false == left
 }

 print(word,perm); // don't forget to print original

order!
 int k;

 // continue as long as a mobile integer exists
 while ((k = getLargestMobile(perm,dir)) != -1)
 {
 // remember the value of the largest mobile for

comparison after the swap
 int kVal = perm[k];
 swap(perm,dir,k,adj(k,n,dir[k]));
 // reverse direction of all integers larger than

the largest mobile
 for (int i=0; i<n; i++)
 if (perm[i] > kVal)
 dir[i] = !dir[i];

 print(word,perm);
 }
 }

// return index of largest mobile inteter, -1 if no

mobile integer exists
 public static int getLargestMobile(int[] perm, boolean[]

dir)
 {
 int largestIndex = -1;
 for (int i=0; i<perm.length; i++)
 if (perm[i] > perm[adj(i,perm.length,dir[i])] &&
(largestIndex == -1 || perm[i] > perm[largestIndex]))

largestIndex = i;
 return largestIndex;
 }
 // return index of the integer i is directed towards,

or its own index if it points to nothing
 public static int adj(int i, int n, boolean dir)
 {
 if (!dir && i>0)
 return i-1;
 else if (dir && i<n-1)
 return i+1;
 return i;
 }
 // swap two elements (be sure to do the swap in the

permutation and direction arrays!
 public static void swap(int[] perm, boolean[] dir, int

a, int b)
 {
 int tempI = perm[a];
 perm[a] = perm[b];
 perm[b] = tempI;
 boolean tempB = dir[a];
 dir[a] = dir[b];
 dir[b] = tempB;
 }
 // output a word associated with a given permutation
 public static void print(char[] word, int[] perm)
 {
 for (int i=0; i<word.length; i++)
 System.out.print(word[perm[i]]);
 System.out.println();
 }
7) (5 pts) How many hours of Jack Bauer's life does a single episode of the show 24 chronicle? 1
