2006 BHCSI Algorithms in Java

Test #2 (75 points)

7/25/06

Name : ______________________________

1) (40 pts) The solution below is the same, except that the class name is Heap instead of HeapTest:
// Arup Guha

// 6/20/05

// Array Implementation of a Heap Class.

public class Heap {

 private int[] elements; // Stores the elements of the heap.

 private int size; // The actual number of elements in the heap.

 public final int EMPTY = -1;

 // Creates an empty Heap, initially with 10 possible locations.

 public Heap() {

 elements = new int[10];

 size = 0;

 }

 // Creates a heap from an array of unordered values.

 // Runs the makeHeap function.

 public Heap(int[] values) {

 // Allocate twice as much space as necessary for the array.

 size = values.length;

 elements = new int[2*(size+1)];

 // Copy in all the values into the elements array. Note that no

 // value is stored in index 0 of the elements array.

 for (int i=0; i<size; i++)

 elements[i+1] = values[i];

 // Percolate Down each necessary element, in backwards order.

 for (int i=size/2; i>0; i--)

 percolateDown(i);

 }

 // Insert the element x into the Heap.

 public boolean insert(int x) {

 // No more space to insert any elements.

 if (size == elements.length-1)

 return false;

 // Initially place x at the bottom/end of the heap.

 elements[size+1] = x;

 // Percolate this element up so it can find its proper location in

 // the Heap.

 percolateUp(size+1);

 // Adjust the size of the Heap and indicate a successful insertion.

 size++;

 return true;

 }

 // Returns the minimum item stored in the Heap.

 public int delMin() {

 // No item to return.

 if (size == 0)

 return EMPTY;

 // Store the minimum value to return.

 int retval = elements[1];

 // Place the last element in the first slot.

 elements[1] = elements[size];

 // Percolate this element down to its proper location.

 percolateDown(1);

 // Adjust the size of the Heap and return the minimum element.

 size--;

 return retval;

 }

 // Percolates up the element at index i.

 private void percolateUp(int i) {

 boolean done = false;

 // Keep on going if we need to as long as the top of the Heap

 // hasn't been reached.

 while (!done && i > 1) {

 // If the current element is smaller than its parent we must

 // continue.

 if (elements[i] < elements[i/2]) {

 // Swap element i with its parent.

 int temp = elements[i/2];

 elements[i/2] = elements[i];

 elements[i] = temp;

 i = i/2; // Adjust i, and see if we need to continue.

 }

 // The correct location of the element has been found.

 else

 done = true;

 }

 }

 // Percolates down the element at index i.

 private void percolateDown(int i) {

 boolean done = false;

 // Keep on going as long we need to as long as we haven't reached

 // the bottom row of the heap.

 while (!done && i <= size/2) {

 // Find the minimum valued child of index i.

 int minindex = findMinChildIndex(i);

 // See if this child is smaller than the one at index i.

 if (elements[i] > elements[minindex]) {

 // Swap these two.

 int temp = elements[minindex];

 elements[minindex] = elements[i];

 elements[i] = temp;

 i = minindex; // Adjust i and continue.

 }

 // We have found the correct location for this element.

 else

 done = true;

 }

 }

 // Finds the index of the minimum child of the element stored at

 // index i.

 // Precondition: i must be the index of a node with a child.

 private int findMinChildIndex(int i) {

 // If the node has only one child.

 if (size == 2*i)

 return 2*i;

 // Compare the two children and return the appropriate index.

 if (elements[2*i] < elements[2*i+1])

 return 2*i;

 else

 return 2*i+1;

 }

}

2) (20 pts) The solution below is the same, except that the class name is MyStack instead of StackTest:

public class MyStack {

 final static int SIZE = 100; // SIZE of ALL stacks

 Object[] items; // Array that stores stack items

 int top_index; // Index of item at top of the stack

 // Creates an empty stack

 public MyStack() {

 items = new Object[SIZE];

 top_index = -1;

 }

 // Returns the top element of the stack, if it exists.

 public Object Top() {

 if (!Empty())

 return items[top_index];

 else

 return null;

 }

 // Pops off the top element of the stack, if it exists.

 public Object Pop() {

 if (!Empty()) {

 top_index--;

 return items[top_index+1];

 }

 else

 return null;

 }

 // Pushes an object onto the stack if it is not full. If it is, the

 // method does nothing and returns false.

 public boolean Push(Object obj) {

 if (!Full()) {

 top_index++;

 items[top_index] = obj;

 return true;

 }

 else

 return false;

 }

 // Returns true iff the stack is empty.

 public boolean Empty() {

 return (top_index == -1);

 }

 // Returns true iff the stack is full.

 public boolean Full() {

 return (top_index == SIZE - 1);

 }

}

3) (15 pts)

 a) Show the result of inserting the following values into a binary search tree,
 in this order: 19, 5, 7, 38, 22, 2, 11, 6, 35, 45, 43, and 41.

19

/

\

 5

38

 / \ / \

 2 7 22 45

 / \ \ /

 6 11 35 43

 /

 41
 b) Show the result of deleting 45 from the final tree above.

19

/

\

 5

38

 / \ / \

 2 7 22 43

 / \ \ /

 6 11 35 41

 c) Show the result of deleting 19 from the tree in part b.

11

/

\

 5

38

 / \ / \

 2 7 22 43

 / \ /

 6 35 41

OR

22

/

\

 5

38

 / \ / \

 2 7 35 43

 / \ /

 6 11 41
