2006 BHCSI Algorithms in Java

Test #1 Solutions
7/18/06
1) The Fibonacci sequence is one of the most well known recursive problems. The sequence goes like this: ‘0 1 1 2 3 5 8 13 21 …’. You need to write a function that computes the nth Fibonacci number. The thing to note is that the 0th Fibonaccu number is 0, and the 1st Fibonacci number is 1, and each of the rest of the numbers is the sum of the previous two! Implement the recursive function according to this prototype:

public static void fib(int n)

{

if (n == 0 || n == 1)

return n;

else

return fib(n-1)+fib(n-2);
}

2) What is wrong with the following Mergesort method? How can this method be corrected? (Hint: There is more than one thing wrong with this code.)

public static void mergesort(int array[]) {

int left[] = new int[array.length / 2];

int right[] = new int[array.length / 2];

for (int i = 0; i < left.length; i++) {

left[i] = array[i];

right[i] = array[left.length + i];

}

mergesort(left);

mergesort(right);

return merge(left, right);

}

public static int[] merge(int left[], int right[]);
1. Since there's a return statement in the code, either the method should be declared to return an int[], OR the method should NOT have a return statement and should instead change array so that it is sorted. The two recursive calls must consistently follow which ever choice is made here.

2. There's no terminating case for the recursion, such as an array size of 1.

3. The size of right should be array.length – array.length/2. This also means that for odd values of array.length, one statement should be added to read in the last value

after the for loop.
3) Given an unsorted array of n elements, consider the problem of finding the kth smallest element in the array, utilizing the Partition method shown in class. Write a method to solve this problem given the prototype of the Partition method below:

// This method partitions the array vals in between indexes
// low and high. It also returns the index in the array of
// the pivot value, which is guaranteed to be in between
// low and high inclusive.

public static int Partition(int[] vals, int low, int high)

(Hint: Your method will be recursive. Once it's known where the partition has formed, it will be known whether the value desired has been found, or is to the left or right of the pivot.)

Please fill in the prototype below. Remember to call the Partition method described above:

// It is guaranteed that k is in between 1 and

// high-low+1, inclusive.
public static int QSelect(int[] vals, int low, int high

 int k) {

 int part = Partition(vals, low, high);
 if (k == part–low+1)

 return vals[part];

 else if (k < part–low+1)

 return QSelect(vals, low, part–1, k);

 else

 return Qselect(vals, part+1, high, k-(part-low+1));

}
4) This question is a little more devious. I explained in the lab that Tic-Tac-Toe can be solved recursively, and I left it out there as a lofty distant goal. But now it’s a test question and you have to do!

The challenge is to write a function that tells you whether or not you can win or tie a Tic-Tac-Toe game from a given situation. I’ve implemented a bunch of utility functions for you that do all the tedious work. If you understand the recursive strategy, you only need to write a small function (maybe 20 lines) to solve the problem. I’ll describe the approach again just to get you on your way.

If the game is already over, then the best outcome is just the current status. This is the basis case. Otherwise, you need to try out all of your possible moves by making a new Game object. Then you want to see what the best outcome is for the OTHER player! If any of your moves cause the other player to lose, then you know you have a winning move. If you don’t have any winning moves, but you have a tying move, then you know you can at least force a draw. Otherwise you’ve lost!

Here is the support code you can use in your program. The most important is the ‘Game’ class, which does everything you need to determine when the game is over, and to try out all of your available moves. You don’t even have to know how the grid is stored internally. There is also a ‘Move’ class which represents a possible location to move to. You don’t have to do anything with a ‘Move’ object, you just pass it to a ‘Game’ object to get a new ‘Game’!
public class Game

{

/* This function returns the current status of the board. There are four possible return values:

‘X’: X has won the game

‘O’: O has won the game

‘T’: The game ended in a tie

‘I’: The game is still in progress

*/

public char getStatus();

/* This function returns an array containing all of the possible next moves. */

public Move[] getMoves();

/* This function returns a new Game object representing what would happen if the given player made the given move on the current board. */

public Game doMove(Move move, char player);

}

You should also use this little function, just because it will make your code a lot shorter than if you make a local variable and try to keep track of it yourself.
public static char otherPlayer(char player)

{

if (player == ‘X’)

return ‘O’;

else

return ‘X’;

}

/* This is the prototype for your function. It should return the best possible outcome from ‘getStatus’ for the current player. In otherwords, if player is ‘X’, and it’s possible for X to win, BestOutcome should return ‘X’. If X can’t win, but can tie, then BestOutcome should return ‘T’. If X is going to lose no matter what move X makes, then BestOutcome should return ‘O’. */

public static char BestOutcome(Game game, char player)

{

/* These are the base cases. If the game has just ended, then the best outcome is the current status. */

if (game.getStatus() == ‘X’)

return ‘X’;

if (game.getStatus() == ‘O’)

return ‘O’;

if (game.getStatus() == ‘T’)

return ‘T’;

/* Set this to the worst possible outcome. Update

 it if we see something better. */

Boolean tieIsPossible = false;

/* Otherwise, we need to try all of the possible moves to see what their outcomes are. */

for (Move move : game.getMoves())

{

/* Try out the move */

Game nextGame = game.doMove(move, player);

/* What would be the OTHER player’s best outcome, if you made this move? */

char best =

BestOutcome(nextGame, otherPlayer(player));

/* If the other player’s can’t do anything but lose, then you’ve found a winning move! */

if (best == player)

return player;

/* If the other player’s next move is going to lead to a tie, then you can at least avoid losing. Since you still want to see if you have a winning move, just remember that it’s possible to force a draw. */

if (best == ‘T’)

tieIsPossible = true;

/* Otherwise, this move is going to lead to defeat, so don’t consider it. */

}

/* If we make it to this point, then we haven’t found a winning move. However, we may be able to force a draw. */

if (tieIsPossible)

return ‘T’;

/* But if we make it here, then all of our moves will end in defeat. Darn. */

return otherPlayer(player);

}
