2005 BHCSI Data Structures in Java

Test #2 Solution

7/22/05

1) (10 pts) Here is an example of a recursive power method:

public static int Power(int base, int exp) {

 if (exp == 0)

 return 1;

 else

 return base*Power(base, exp-1);

}

One observation that can improve this implementation is noting that if the exponent is even, then we can calculate the square root of the value required and simply square it. For example, if we are calculating 410, we can just calculate 45, store this in a temporary variable and then square this using regular multiplication. If the exponent is odd, we can still do exactly what the solution above does. Write a recursive Power method that utilizes this idea:

public static int Power(int base, int exp) {

 if (exp == 0)

 return 1;

 if (exp == 1)

 return base;

 if (exp%2 == 0) {

 int ans = Power(base, exp/2);

 return ans*ans;

 }

 return base*Power(base, exp-1);

}

2) (10 pts) What value does the method call Question3(7,5) return?

public static int Question3(int a, int b) {

 if (a==0)

 return b;

 if (b==0)

 return a;

 if (a>b)

 return a + Question3(a-1,b);

 else

 return b + Question(a, b-1);

}

 Question3(7,5) = 7 + Question3(6,5) = 7+6+Question3(5,5)

 = 13 + 5 + Question3(5,4)

 = 18 + 5 + Question3(4,4)

 = 23 + 4 + Question3(4,3)

 = 27 + 4 + Question3(3,3)

 = 31 + 3 + Question3(3,2)

 = 34 + 3 + Question3(2,2)

 = 37 + 2 + Question3(2,1)

 = 39 + 2 + Question3(1,1)

 = 41 + 1 + Question3(1,0)

 = 41 + 1 + 1 = 43
3) (8 pts) If we run an insertion sort on the array below, how many swaps occur? Which values get swapped?

	index
	0
	1
	2
	3
	4
	5
	6
	7

	value
	12
	3
	9
	4
	6
	8
	16
	1

Number of swaps: 15

Values that get swapped: (12, 3), (12, 9), (12, 4), (9, 4), (12, 6), (9, 6), (12, 8), (9, 8), (16, 1), (12, 1), (9, 1), (8, 1), (6,1), (4, 1), (3,1)

4) (8 pts) Assume that the integer array values is full and we want to add a value (15) to the end of the array. Create a new temporary array twice as big as values, copy in the contents of values into the temporary array, and then add 15 in the next array location. Finally, assign this array to the array values.

int[] temp = new int[2*values.length];

for (int i=0; i<values.length; i++)

 temp[i] = values[i];

temp[values.length] = 15;

values = temp;

5) (14 pts) Add the following method to the LL class:

// Takes the last element in the linked list

// pointed to by the current object and moves

// it to become the first element in the linked

// list pointed to by the current object.

public void lastToFirst() {

 // Nothing to do in these cases.

 if (head == null || head.next == null)

 return;

 Node temp = head;

 // Iterate to the second to last node.

 while (temp.next.next != null)

 temp = temp.next;

 // Connect the last node to the first.

 temp.next.next = head;

 // Reassign head to be the last node.

 head = temp.next;

 // Make the node "before" head point to null.

 temp.next = null;

}

