BHCSI Data Structures & Algorithms Program 5: Quick Sort
Assigned: 7/14/04 (Wednesday)

Due: 7/15/04 (Thursday)
Write a program to sort a list of integers using the Quicksort algorithm. Try your program on lists of size 1000, 5000, 10000, 50000, 100000, 500000, and 1000000. (You may try other sizes as well.) Generate the list randomly, choosing integers in between 0 and 100,000 inclusive. To verify that your algorithm worked, write a verify method that takes in an array and returns true if and only if the array is sorted in non-decreasing numerical order. Attempt to gauge the run time of your sort experimentally. (For the smaller arrays, you may have to run your sort several times before you can measure the run time. To do this, simply divide the total time by the number of times you ran the sort.)

If you complete this, try coding up Merge Sort as well. See which of the two algorithms runs more quickly. Do your results correspond to the theoretical results? Why or why not?

One other variation you can try on both of these is to use a larger terminating condition. For small arrays, it turns out that insertion sort is even more efficient that Quick Sort. Thus, rather than only using array sizes of 0 or 1 as the terminating condition, use any array of size less than 20 as the terminating condition. In this situation, obviously the subarray in question will not be sorted. Thus, in this terminating condition, you should use insertion sort to sort the small set of elements (less than 20) in the terminating case. Does this variation help speed up the algorithm?

