2005 BHCSI Algorithms in Java

Test #1

7/15/05

Name : ______________________________

1) (5 pts) What is the MCSS of the following sequence of numbers?

8, 2, -7, 5, 2, -5, 1, -11, 3, -10, 1, 8, -5, 4, -7, 1, -5, 4, 5, -3, 6

12 (partial: if they answer 10 give them 3 pts, 0 otherwise)

2) (5 pts) What is the output of the question2(4)?

public static void question2(int n) {

 if (n > 0) {

 question2(n-1);

 System.out.print(n);

 question2(n-1);

 }

}

121312141213121 (1 pt for 1 4 in middle, 1 pt for having

the same thing on the left and right of it, 3 pts for the

rest.)
3) (5 pts) If the array below were sorted using Merge-Sort, what would the array look like after the tenth call to the Merge method, in the middle of the sort? (Hint: A total of 15 calls are made to the Merge method during the entire run of Merge-Sort on this array.)

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	19
	4
	8
	5
	15
	3
	1
	7
	14
	11
	9
	13
	2
	17
	6
	12

Answer: //Grading: 2 pts to sort 1st half, 2 pts to sort index 8-11, 1 pt to leave 12-15.

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	1
	3
	4
	5
	7
	8
	15
	19
	9
	11
	13
	14
	2
	17
	6
	12

 4) (5 pts) Consider running partition on the array below using the element stored in index 0 as the partition element. Using the specific in-place partition algorithm shown in class, identify each pair of values that gets swapped during the algorithm and which indexes they are in when they get swapped.

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	11
	4
	8
	5
	15
	3
	14
	7
	1
	19
	9
	13
	2
	17
	6
	12

	Value Swapped
	Its index before swap
	Value Swapped
	Its index before swap

	15
	4
	6
	14

	14
	6
	2
	12

	19
	9
	9
	10

	11
	0
	9
	9

// Grading: 1 pt for each row, 1 pt extra for all correct.

5) (5 pts) Show each iteration of Radix sort when sorting the following values:

	Original List
	1 sort
	10 sort
	100 sort
	sorted

	1823
	2491
	1823
	6129
	1665

	6254
	1823
	2424
	6254
	1823

	6853
	6853
	3824
	6364
	2399

	2424
	6254
	6129
	2399
	2424

	3824
	2424
	6853
	2424
	2491

	1665
	3824
	6254
	2491
	3824

	2399
	6364
	6364
	1665
	6129

	6364
	1665
	1665
	1823
	6254

	2491
	2399
	2491
	3824
	6364

	6129
	6129
	2399
	6853
	6853

2 pts for first row, 2 pts for second row, 1 pt for third row.

6) (5 pts) What is the minimum number of comparisons necessary to sort 12 values? (Hint: 12! is approximately 4.79x108, log210 = 3.32 to three significant digits, and log24.79 = 2.26 to three significant digits. Note: You will not get full credit on this question if you manually multiply powers of 2. You will only get full credit if you utilize all the values in the hint and properly apply log rules.)

Using the idea behind the proof in class used to show that a comparison sort of n elements is ((nlgn) time, we know that the minimum number of comparisons k is also the minimum integer to satisfy the following equation:

2k (12!

2k (4.79x108
log22k (log2(4.79x108)

k (log24.79 + log2108

k (log24.79 + 8log210

k (2.26 + 8(3.32)

k (2.26 + 8(3.32)

k (28.82, the minimal integer that satisfies this requirement is 29. Thus, 29 comparisons are needed to sort 12 values.

1 pt for setting up eqn

1 pt for plugging in values

1 pt for logging both sides

1 pt for using log rules

1 pt for final answer

7) (20 pts) A maze is represented by a two-dimensional integer array of size 10x10. In particular, each array element is set to 0, 1, 2, or 3. If an element is set to 0, that means that you can not move to any adjacent squares from that square. If an element is set to 1, that means you can either move to the left or the right from that square. If an element is set to 2, that means you can either move up or down from that square. Finally, if an element is set to 3, you can move left, right, up or down. Write a recursive method that takes a two-dimensional integer array representing a maze in this fashion, along with valid integer x, y coordinates for a starting point, and sets each element of the maze that is reachable from the given starting point to -1.

For example, if we were given a 4x4 maze
[image: image1.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

2

1

2

0

3

0

2

0

1

0

3

1

1

1

1

1

 and the starting coordinates row 0 and column 1, then your method should change the maze to look like
[image: image2.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

2

1

2

0

3

0

2

0

1

0

3

1

1

1

1

1

, since each value in the first row is reachable from (0,1), but there is no way to move down from that row. Write the method on the following page where the prototype is provided. In your method, you may choose to call the following method:

public static boolean isValid(int x, int y, int size) {

 if (0 <= x && x < size && 0 <= y && y < size)

 return true;

 return false;

}

public static void doMaze(int[][] maze, int x, int y) {

 if (!isValid(x,y,maze.length))

 return;

 int saveval = maze[x][y];

 maze[x][y] = -1;

 if (saveval == 1 || saveval == 3) {

 doMaze(maze, x, y+1);

 doMaze(maze, x, y-1);

 }

 if (saveval == 2 || saveval == 3) {

 doMaze(maze, x+1, y);

 doMaze(maze, x-1, y);

 }

}

// 5 pts for taking care of valid indexes.

// 3 pts for setting square to -1

// 4 pts for doing 1 case correctly

// 4 pts for doing 2 case correctly

// 4 pts for doing 3 case correctly
_1158381129.unknown

_1158392367.unknown

