BHCSI Intermediate C++ 

Homework Assignment: Phonebook

Assigned: Monday, 7/14/03

Due: Tuesday, 7/15/03

Your program will manage an phone book, making use of the various sorting algorithms you have learned in class. When your program starts, your user will be given an empty phone book. From that point on, the user may edit the phone book in the following ways:

1) Add a single entry (entered by user)

2) Add a set of entries from a file

Your program should also be able to support queries for phone numbers given the last name of the person in question. Thus, the whole menu for your program should be as follows:

1) Add a single entry

2) Add a set of entries from a file

3) Find a phone number

4) Print out all the entries in the phone book

5) Print out all the entries that start with a particular letter in the phone book

6) Quit

Note: Your phone book should be sorted by last name in ascending alphabetical order. If two people have the same last name, then the first name should be used as a tie-breaker. You will be guaranteed that no two entries will have the exact same first and last name.

Adding one entry

Your program should maintain a sorted list of all entries throughout its execution. Thus, adding a single entry should be implemented as one iteration of Insertion sort. In particular, the entry should initially be added to the end of the array storing all the items and "inserted" into the list in its proper place by swapping adjacent entries as necessary.

Adding entries from a file

When adding entries from a file, you must prompt the user for the name of the input file. The input file has the following format:

1) The first line contains a single character, either an S or an U. An S indicates that all the entries in the file are already sorted while an U indicates that the entries in the file are listed in unsorted order.

2) The second line contains a single integer - the number of entries stored in the file.

3) Each subsequent line stores information for one entry. Each line will have the first name, followed by white space, followed by the last name, followed by white space, followed by a 7-digit integer (which can be stored in an int) which is the phone number for that entry.

If a file read in does not fit this format, you should prompt the user with a message saying that the file was not added to the phonebook since its format was improper. (If you have time, you may work on displaying more specific error messages.)

If the file is sorted, then store this information in a separate array, and "Merge" this sorted array with the currently sorted phonebook. If this file is NOT sorted, store this information in a separate array and run Quick Sort on this array. Then, run Merge on this newly sorted array and the currently sorted phonebook.

Searching for phone numbers

For this option, simply prompt the user for the first and last name in question. Your program should output the person's phone number if it's stored in the phonebook or output an error message saying that no phone number is recorded for that person. Use the binary search algorithm shown in class to conduct the search.

Printing Phone Numbers

Although you'll be storing the phone numbers as integers, you will still be required to print them out in the standard format (e.g. 555-1234). You should list both the last name and first name of each name requested in alphabetical order. If option number 4 is chosen, simply print out all the entries in the phone book. If option number 5 is chosen, prompt the user for a letter in the alphabet and display all the entries which have last names that start with that letter. Please print one entry per line.

Other Requirements

Store information for each entry in a struct. Create a phonebook class to store your phonebook. Thus, while your program is running you will maintain one main phonebook object. You will instantiate a second phonebook object when a file is read in. Your phonebook class should contain a Merge method, a Quick Sort method, and a Search method at least. (Your phonebook class can contain other methods as well.) Also, you must use dynamically expanding arrays. (Initialize your phone book object to hold 10 entries.)

