BHCSI Intermediate C++

Homework Assignment #4: Paint Bucket

Assigned: Thursday 7/11/03

Due: Friday 7/11/03

Programming the Paint Bucket

Description: Most graphics packages contain an image manipulation tool called the paint bucket (aka floodfill). You’ve probably used it before, but you may not know it by name. Given a point on an image and a color, this tool will find the largest area of consistent color around that point, and replace it with the specified color. This is done by starting at the point specified and recursively searching all adjacent points (up, down, left, and right) to see if they are of the same color. If the points share a common color (or if the colors are within a certain tolerance) the adjacent point is re-colored and it’s neighbors are then searched. This continues until there are no more points left which fit the criteria. This type of fill algorithm is sometimes called a “grassfire” algorithm because of the way the “fire” (or fill) spreads across the image.

[image: image1.png]

Assignment: You are to create a recursive function that executes this floodfill. The prototype of your function is given below:

void floodfill(PGMImage& img, int x, int y, int col);

img

-
The image file to load

x -
(int) The x coordinate of the fill start (0 being the left side of the image with the values increasing from left to right).

y -
(int) The y coordinate of the fill start (0 being the top side of the image with the values increasing from top to bottom).

col -
(int) A value between 0 and 255 inclusive, specifying the grayscale intensity of the fill “color” (0 being black, 255 being white)

Viewing the PGM Files: If you would like to view the image files you can either open them in notepad (although only the header is in human readable format) or download a freeware image viewer such as IrfanView (available at http://www.irfanview.com/).

Saving/Loading the PGM Files: Attached is a class that you may choose to use to assist in loading and saving PGM files.

This code can be found on the class website.

class PGMImage {

public:

	PGMImage();

	~PGMImage();

// enables image[row][col]

	int*		operator[](int nRow) { return GetRow(nRow); }

	int*		GetRow(int nRow);

	// return values: 1 = success, 0 = fail

	int		Load(const char* szFileName);

	int		Save(const char* szFileName);

	int		GetWidth(void) { return cx; }

	int		GetHeight(void) { return cy; }

private:

	int*		pData;

	int		cx, cy;

};

typedef unsigned char UCHAR;

PGMImage::PGMImage()

{

	// initialize members

	pData = NULL;

	cx = cy = 0;

}

PGMImage::~PGMImage()

{

	// delete our memory if we need to

	if (pData != NULL)

		delete[] pData;

}

int* PGMImage::GetRow(int nRow)

{

	// return the pointer offset by the rowsize*nRow

	return pData + nRow*cx*sizeof(int);

}

int PGMImage::Load(const char* szFileName)

{

	if (szFileName == NULL)

		return 0;

	// open the file

	FILE *fIN = fopen(szFileName, "rb");

	if (fIN == NULL)

		return 0;

	// read type and skip any comments

	char szLine[512];

	fscanf(fIN, "P5\n");

	do {

		if (fscanf(fIN, "%[^\n]\n", szLine) != 1) {

			fclose(fIN);

			return 0;

		}

	} while (szLine[0] == '#');

	// read in the header

	int nWidth, nHeight;

	int nColors = 255;

	if (sscanf(szLine, "%d %d\n", &nWidth, &nHeight) != 2) {

		fclose(fIN);

		return 0;

	}

	fscanf(fIN, "%d\n", &nColors);

	

	// make sure everything's in order

	if (nColors != 255 || nWidth < 1 || nHeight < 1)

		return 0;

	// delete any old data if present

	if (pData != NULL)

		delete[] pData;

	// allocate memory

	pData = new int[nWidth*nHeight];

	UCHAR* pRawData = new UCHAR[nWidth*nHeight];

	// read in data and close file

	int nRead = fread(pRawData, sizeof(UCHAR), nWidth * nHeight, fIN);

	fclose(fIN);

	// convert to ints

	for (int i=0;i<nWidth*nHeight;i++)

		pData[i] = (int)pRawData[i];

	// get rid of raw data and save height and width values

	delete[] pRawData;

	cx = nWidth;

	cy = nHeight;

	// return 1 for success

	return 1;

}

int PGMImage::Save(const char* szFileName)

{

	if (pData == NULL || szFileName == NULL)

		return 0;

	// open the file

	FILE *fOUT = fopen(szFileName, "wb");

	if (fOUT == NULL)

		return 0;

	// write out the header

	const int nColors = 255; // only assuming one color format

	fprintf(fOUT, "P5\n# Created by a UCF BHCSI student!\n%d %d\n%d\n",

cx, cy, nColors);

	// write out the data

	for (int i=0;i<cy*cx;i++)

	{

		UCHAR ucOut = (UCHAR)pData[i];

		fwrite(&ucOut, sizeof(UCHAR), 1, fOUT);

	}

	// close the file and return 1 for success

	fclose(fOUT);

	return 1;

}

_1114196414.psd

