BHCSI Data Structures in C++

Test #2 (7/18/03)

Name: __________________

1) (4 pts) Consider Merge Sorting the following list: 9, 3, 2, 7, 1, 8, 4, 6, and 5. What order will the list be in right before the last Merge method gets called?

Either 1, 2, 3, 7, 9, 4, 5, 6, 8

OR

2, 3, 7, 9, 1, 4, 5, 6, 8

2) (4 pts) Consider running a Partition on the list 6, 2, 8, 1, 7, 9, 3, 4, 9, 5 using 6 as the partition element. Using the in-place Partition algorithm shown in class, what will the list look like directly after it has been partitioned?

3, 2, 5, 1, 4, 6, 9, 7, 9, 8

3) (4 pts) Why does Quick Sort usually run faster than Merge Sort, even if Quick Sort does not split the list of values to sort evenly?

Because in Quick Sort when you run the partition, you do not have to copy all the values into an auxiliary array and back. This extra overhead makes Merge Sort slower than Quick Sort.

4) (4 pts) Would the following MergeSort method work, assuming that the Merge method it calls works properly? Why or why not?

public static void MergeSort(int[] vals, int low, int high) {

 if (high > low) {

 int quarter = (3*low+high)/4;

 MergeSort(vals, low, quarter);

 MergeSort(vals, quarter+1, high);

 Merge(vals, low, quarter, high);

 }

}

Yes, it would work just fine. It would be slower than the standard Merge Sort by a constant factor, but because the Merge works on Merging unequal sized sorted lists, there is no reason you can't Merge a small sorted list with a large sorted list as the code dictates.

5) (32 pts) Consider declaring a LinkString class that stores strings using a linked list of characters. The struct used and class definition are below. Define the methods listed in the class.

struct listnode {

 char let;

 listnode *next;

}

class LinkString {

 public:

 LinkString();

 LinkString(char word[], int length);

 void append(LinkString suffix);

 int length();

 bool compareTo(LinkString str);

 void printString();

 private:

 listnode *word;

}

LinkString::LinkString() {

 word = null;

}

// Creates a LinkString object storing the first length

// characters of word. (These are the characters in indexes

// 0 through length-1.

LinkString::LinkString(char word[], int length) {

 listnode *last = null;

 for (int i=length-1; i>=0; i--) {

 listnode *temp = new listnode;

 temp -> let = word[i];

 temp -> next = last;

 last = temp;

 }

 word = last;

}

// Appends the LinkString object suffix to the current

// object.

void LinkString::append(LinkString suffix) {

// Take care of empty case.

if (word == NULL) {

word = suffix.word;

return;

}

// Iterate temp through current list.

listnode *temp = word;

while (temp->next != NULL)

temp = temp->next;

// Attach last node to first in suffix.

temp->next = suffix.word;
}

// Returns the length of the current object.

int LinkString::length() {

//Take care of the empty string.

if (word == NULL)

return 0;

// Update a counter while moving temp through the list

int len = 0;

listnode *temp = word;

// Add one to count and advance temp.

while (temp != NULL) {

len++;

temp = temp->next;

}

return len;
}

// Returns true if and only if the current object is

// less than or equal to str, lexicographically.

bool LinkString::compareTo(LinkString str) {

// Nothing comes before an empty word.

if (str.word == NULL)

return false;

if (word == NULL)

return true;

// Set up a temporary pointer for each list.

listnode *temp1 = word;

listnode *temp2 = str.word;

// Continue as long as neither word is exhausted.

while (temp1 != NULL && temp2 != NULL) {

// Found a difference, current word comes first.

if (temp1->let < temp2->let)

return true;

// Found a difference, str comes first.

else if (temp1->let > temp2->let)

return false;

// Can't determine which comes first yet.

else {

temp1 = temp1->next;

temp2 = temp2->next;

}

}

// If temp1 is null current word is equal to or comes

// before str.

if (temp1 == NULL)

return true;

else

return false;
}

// Prints out the current object with each character

// contiguous character right next to each other.

void LinkString::printString() {

// Print out each letter, one at a time.

listnode *temp = word;

while (temp != NULL) {

cout << temp->let;

temp = temp->next;

}

}

7) (2 pts) Which city do the current Super Bowl champion Tampa Bay Buccaneers play their home football games?

Tampa Bay
