BHCSI Data Structures in C++

Test #1 (7/11/03)

Name : [SOLUTIONS]

1) (15 pts) Write a function that takes in an integer array with values ranging from 0 to 100, inclusive and returns the value that occurs in the array most frequenty. Thus, if an array storing 3, 8, 1, 2, 99, 0, 2, 3, and 4 was passed to the function, the function should return 3. The prototype of the function is given to you below:

// Preconditions: values stores integers in the range 0 through 100, inclusive.

// size is the size of the array values.

int mode(int values[], int size) {

int frequency[101]; // holds frequency of each number in values[]

int greatestFrequency = 0; // holds frequency of most frequently occuring int

int mostFrequentInteger = 0; // holds value of most frequently occuring int

int i; // our trusty loop counter

// Don't forget to initialize all the integers in the array to zero.

// Otherwise, they may contain garbage values.

for (i = 0; i < 101; i++)

frequency[i] = 0;

// The frequency[] array has 101 "buckets," ranging from 0 to 100. Here, we traverse

// the values[] array and drop a stone in the bucket corresponding with each value

// in the array we encounter (i.e., if values[0] is 82, we increment frequency[82])f.

for (i = 0; i < size; i++)

frequency[values[i]]++;

// We now traverse the frequency[] array, and see which bucket has the most stones.

// As we go, we keep track of the fullest bucket we've encountered, and how many

// stones it had. If we encounter a bucket with even more stones than the fullest

// bucket we know of, then we reset the greatestFrequency and mostFrequentInteger

// values and continue on down the array.

for (i = 0; i < 101; i++)

if (frequency[i] > greatestFrequency) {

greatestFrequency = frequency[i];

mostFrequentInteger = i;

}

// Voila! We now return the most frequently occuring integer in the array.

return mostFrequentInteger;
}
2) (18 pts) Vectors defined in three dimensions take the form ai+bj+ck, where a, b and c are all real number values and i, j, and k are vectors in the direction of the x-axis, y-axis, and z-axis, respectively. Here are the definitions of two functions between two vectors:

Addition: (ai+bj+ck) + (di+ej+fk) = (a+d)i + (b+e)j + (c+f)k

Dot Product: (ai+bj+ck) * (di+ej+fk) = (a*d)i + (b*e)j + (c*f)k

Here is the definition of the magnitude of a vector:

magnitude(ai+bj+ck) = ((a*a+b*b+c*c)

Write the methods in the mathvector class that implement these three operations. (The methods to write are in bold.) The .h file along with two constructors has been given to you below:

class Mvector {

 public:

 Mvector();

 Mvector(int x, int y, int z);

 double magnitude();

 friend Mvector operator +(const Mvector& v1, const Mvector& v2);

 friend Mvector operator *(const Mvector& v1, const Mvector& v2);

 private:

 double comps[3];

};

Mvector::Mvector() {

 for (int i=0; i<3; i++)

 comps[i] = 0;

}

Mvector::Mvector(int x, int y, int z) {

 comps[0] = x;

 comps[1] = y;

 comps[2] = z;

}

Please answer question #2 here:

double Mvector::magnitude() {

// Don't forget to include math.h for the sqrt() function.

// Recall that magnitude of <a, b, c> is sqrt(a^2 + b^2 + c^2)

// Note that you can return this value without creating a new variable to store it.

return sqrt(comps[0] * comps[0] + comps[1] * comps[1] + comps[2] * comps[2]);

}

Mvector operator +(const Mvector& v1, const Mvector& v2) {

// Note that we do not declare this as

// Mvector::Mvector operator +(const Mvector& v1, const Mvector& v2)

// because it is declared as a friend of Mvector in the header file.

// If this were simply declared as a member function of Mvector, it

// would only take one parameter and would be declared as follows:

// Mvector::Mvector operator +(const Mvector& v1) {

// Mvector temp;

//

// for (int i = 0; i < 3; i++)

// temp.comps[i] = comps[i] + v1.comps[i];

//

// return temp;

// }

// In the above example, temp.comps[] stores the components of the new

// vector, which holds the results of the addition. comps[] holds the

// values in the vector which is the left hand side of a vector1 + vector2

// operation, and v1.comps[] holds the values in the vector which is the

// right hand side of a vector1 + vector2 operation.

// Create a new Mvector in which to store the result of this addition.

Mvector temp;

// Add each component of vector v1 to its corresponding component in vector v2.

for (int i = 0; i < 3; i++)

temp.comps[i] = v1.comps[i] + v2.comps[i];

// Return the new Mvector.

return temp;

}

Mvector operator *(const Mvector& v1, const Mvector& v2) {

// Create a new Mvector in which to store the result of this multiplication.

Mvector temp;

// Multiply each component of vector v1 by its corresponding component in v2.

for (int i = 0; i < 3; i++)

temp.comps[i] = v1.comps[i] * v2.comps[i];

return temp;

}
3) (15 pts) Write a recursive function power, that given double parameter base and the integer parameter exp, returns baseexp. The prototype is given to you below:

double power(double base, int exp) {

// Any base raised to the zero exponent is one.

// This is our terminating condition, the condition

// that is reached when we want to stop recursing.

if (exp == 0)

return 1;

// Recall that if exp is negative, you must make it

// positive and take the reciprocal of base ^ exp.

// i.e., (2 ^ -5) = 1 / (2 ^ 5)

if (exp < 0)

return 1 / power(base, -1 * exp);

// If the exponent is neither negative nor zero, we

// decrement exp and recurse.

// Note that we must decrement exp BEFORE calling the

// function. That is, you can call power(base, --exp),

// but if you call power(base, exp--), exp will not be

// decremented until AFTER the function call returns,

// and this will create an infinite loop.

// For example:

// Assume base = 2, and exp = 5.

// Calling power(base, --exp) is equivalent to calling

// power(2, 4).

// Calling power(base, exp--) is equivalent to calling

// power(2, 5).

return base * power(base, --exp);

}

4) (2 pt) What acronym is commonly used to refer to the University of Central Florida?

UCF (which also stands for “Under Construction Forever” and “U Can’t Finish”)

