Scrabble Assignment

In this assignment, you have been given a graphical, skeleton version of the Scrabble game. Your goal is to fill in the missing functions and write the code that will allow two users to play an actual game of Scrabble.

Since this assignment is rather large, the write-up is divided into the following four sections:

1) Special Game Play Elements

This section describes a few special objects and functions that you will have to write in order for your Scrabble game to function correctly, in addition to the main game play algorithms.

2) The Three Virtual Functions of Assignment.CPP

This section explains the main part of the code that you will have to write. Assignment.CPP will contain the algorithms that drive the game play and communicate with the graphical user interface.

3) Utility Functions

This section describes some of the pre-written functions that you have at your disposal to communicate with the graphical user interface of the Scrabble game.

4) Inherited Member Variables

This section describes some of the inherited member variables that you have at your disposal, and which you will have to access for your code to work properly.

Special Game Play Elements

This section describes a few special objects and functions that you will have to write in order for your Scrabble game to function correctly, in addition to the main game play algorithms.

Bag of Tiles

Before you begin, you will have to create some sort of global bag object with the tiles for game play. When the game begins, the bag should contain an array that will store values for how many of each tile are left in the bag. At the beginning of the game, the bag should have the following number pieces:

	Letter
	Tile Count
	Letter
	Tile Count

	
	
	
	

	A
	9
	N
	6

	B
	2
	O
	8

	C
	2
	P
	2

	D
	4
	Q
	1

	E
	12
	R
	6

	F
	2
	S
	4

	G
	3
	T
	6

	H
	2
	U
	4

	I
	9
	V
	2

	J
	1
	W
	2

	K
	1
	X
	1

	L
	4
	Y
	2

	M
	2
	Z
	1

	
	
	
	

	Blank
	2
	
	

The bag should have at least the following member function:

char drawTile();

This function should randomly select a tile from the bag and return it to the user as type char. This will be used when players use their tiles and then draw new ones from the bag. Once a tile has been drawn from the bag, don’t forget to decrement the number of remaining tiles of that letter in the bag.

Dictionary Checking

You should mostly be able to reuse your code from the SpellChecker assignment. You just need to get your work to fit within the given framework.

The Three Virtual Functions of Assigment.CPP

This section explains the main part of the code that you will have to write. Assignment.CPP will contain the algorithms that drive the game play and communicate with the graphical user interface.

StartGame(char *szP1Name, char *szP2Name, int fComputer)
This is the function that is called on when the game begins in order to initialize the game and prepare the board and players for game play. An example of this virtual function already exists for you to examine in assignment.cpp. Your goal is to rewrite this function to do the following:

1) Set the member variables m_szPlayerNames[0] and m_szPlayerNames[1] to szP1Name and szP2Name, respectively. This is already done in the example assignment.cpp, and does not need to be modified.

2) Randomly draw seven tiles from the bag you’ve created for each player. As each tile is drawn, it will have to be stored in the appropriate player tray. Two player trays have already been created for you, and documentation of their use is found in the Inherited Member Variables section of this document.

3) Display any relevant game play instructions, and inform Player 1 that it is his turn. Displaying messages can be accomplished through the Alert function, which is further documented in the Utility Functions section of this document.

4) You may ignore fComputer for now. Eventually, this variable will be used to determine whether Player 1 is playing a human or computer opponent.

Input(char *szWord, int x, int y, int dir)

This function is called when the player presses the “Submit” button during game play.

szWord is the word the user is attempting to place

x and y are the coordinates of the first tile of the word

dir is an integer representing the direction of the word, where 0 is a horizontal word and 1 is a vertical word.

At any point during the game, for debugging purposes, you can look at the display field above the board to see what function call is being made when the user hits the “Submit” button.

When this function is called, it should perform several operations:

1) First of all, check to see whether the user has all the letters he is trying to use in his new word! Take into consideration the fact that if he is missing one or two letters, he may be trying to use his blank tile(s) (if he has any).

2) Consult a dictionary file to see if the word being submitted is a real word. If not, prompt the user to try again.

3) Recursively check whether any tile being placed is adjacent to any other tile that is already on the board, and if so, whether the additional words being formed are in the dictionary. Be sure to keep track of any new words formed so you may pass them to your score counting function later.

4) Check to see that the word will not run off the board if it is placed at the indicated starting tile. Note that the board is 15x15, so this calculation should be easily.

5) Calculate the how many points the newly formed word(s) are worth. You may want to write a special function to do this, as it will not only have to check how many points each tile is worth, but also whether or not any of the tiles are on spaces on the board that multiply how many points the letter or word is worth. To check squares adjacent to the newly placed tiles, you’ll have to access the board contents by accessing m_cBoardMap[][]. This is described further in the Inherited Member Variables section of this document. Letters are worth the following number of points:

	Letter
	Points
	Letter
	Points

	
	
	
	

	A
	1
	N
	1

	B
	3
	O
	1

	C
	3
	P
	3

	D
	2
	Q
	10

	E
	1
	R
	1

	F
	4
	S
	1

	G
	2
	T
	1

	H
	4
	U
	1

	I
	1
	V
	4

	J
	8
	W
	4

	K
	5
	X
	8

	L
	1
	Y
	4

	M
	3
	Z
	10

	
	
	
	

	(Blank)
	0
	
	

6) Give the user however many points he has earned by accessing m_sPlayerPoints[]. This is discussed further in the Inherited Member Variables section of this document. You will also want to display a message saying how many points the user gained from the move by using the Alert() function, described in the Utility Functions section of this document.

7) Once the new word has been placed, be sure to replace the used letters in the user’s tray with new ones, randomly drawn from the bag of tiles you’ve created. Accessing the user’s tray, m_cPlayerTiles[][], is described in the Inherited Member Variables section of this document.

8) Modify the contents of the board by accessing m_cBoardMap[][] and then refresh the display. Modifying and accessing the contents of the board is described further in the Inherited Member Variables section of this document, and redisplaying the board is discussed further in the Utility Functions section of this document. However, displaying the board is very easy and doesn’t truly require an in-depth explanation: simply call RefreshBoard();
EndTurn(void)

This function is called when a player ends his turn, and is used to keep track of who is playing. The reason it is not called automatically at the end of a player’s turn is because he may want to look at the new tiles he has drawn from the bag so he can think about his next move while his opponent is playing.

This function is already written for you, and does not really need any modification.

Special considerations:

The first user to make a move, when the board is still empty, may place any word he wants in any direction, as long as one of the tiles being placed covers the center square on the board.

When the draw bag start to get empty, players may not have all seven slots of their trays filled with letters. You will have to find your own way of handling this special problem.

Utility Functions

This section describes some of the pre-written functions that you have at your disposal to communicate with the graphical user interface of the Scrabble game.

Alert(char *szMsg)

This function is used to pop up an alert window with a message for the players. Since it only accepts one argument, unlike printf, which accepts a variable number of arguments, it may be necessary to store your message to a string before passing it to the Alert function.

Example of use:

If you want to address Player 1 by name and tell him that it’s his turn, you cannot type the following:

Alert(“%s, it is your turn.”, m_szPlayerNames[0]); // This is bad.
That won’t work, because Alert only accepts one argument. Instead, try the following:

char szBuf[256]; // Create a string of up to 256 characters
sprintf(szBuf, “%s, it is your turn.”, m_szPlayerNames[0]);

// copy that string into szBuf

Alert(szBuf); // Display szBuf to the user in a graphical message window

After displaying an Alert message, you should always refresh the display by using the RefreshBoard function.

RefreshBoard(void)

This function refreshes the display, and should be used after displaying an Alert message.

Example of use:

RefreshBoard();

Inherited Member Variables

This section describes some of the inherited member variables that you have at your disposal, and which you will have to access for your code to work properly.

int m_nWhosTurn

This is an integer that is used to determine whose turn it is. It is set to 0 if it is Player 1’s turn, and 1 if it is Player 2’s turn. You will use this primarily to assign points to players during the game play.

Since the EndTurn(void) function is already written for you, you do not ever need to worry about modifying m_nWhosTurn.

int m_nPlayerPoints[2]

This is a one-dimensional array of size two, and it is used to keep track of how many points a player has. Player 1’s points are stored in m_nPlayerPoints[0], and Player 2’s points are stored in m_nPlayerPoints[1].

Example of use:

To give whoever’s turn it is a million points, you would issue the following command:

m_nPlayerPoints[m_nWhosTurn] += 1000000;
char m_cPlayerTiles[2][7]

This is a two-dimensional, 2x7 array representing the two players’ trays of tiles.

The first index position indicates which player we’re talking about, 0 being Player 1 and 1 being Player 2.

The second index position indicates which position of the tray we’re talking about, ranging from 0 to 6 (corresponding to positions 1 to 7).

Example of use:

Let’s say Player 1 just put a letter ‘A’ on the board, and it came from slot slot 3 on his tray, and you want to replace it with a ‘B’ tile. You can do that by issuing the following command:

m_cPlayerTiles[0][3] = ‘B’;

char m_cBoardMap[15][15]

This two-dimensional, 15x15 array stores the characters that are currently in play on the Scrabble board.

The first index position identifies the column (left-to-right), and the second index position identifies the row (top-to-bottom).

Example of use:

If you want to put a letter ‘X’ in the middle column (that’s the 8th column over, but we use index position 7 to identify it in the array) and the very bottom row (that’s row 15, but we use row 14 to access it in the array), you can issue the following command:

m_cBoardMap[7][15] = ‘X’;
char
m_szPlayerNames[2][128];

This two-dimensional, 2x128 array is available to you for storing the names of the players that are input at the beginning of the program’s execution. The first index refers to the player, 0 for Player 1, 1 for Player 2, and the maximum length of each names is 128 characters.

