Disjoint Sets

A disjoint set contains a set of sets such that in each set, an element is designated as a marker for the set. Here is a simple disjoint set:

{1}, {2}, {3}, {4}, {5}

clearly there can only be one marker for each of these sets. Given a disjoint sets, we can edit them using the union operation. For example:

union(1,3) would make our structure look like:

{1,3}, {2}, {4}, {5}

Here we would have to designate either 1 or 3 as the marker. Let's choose 1. Now consider doing these two operations:

union(1,4)

union(2,5) (Assume 2 is marked.)

Now we have:

{1,3,4}, {2,5}

Now, we can also do the findset operation.

findset(3) should return 1, since 1 is the marked element in the set that contains 3.

Disjoint Set Implementation

A set within disjoint sets can be represented in several ways. Consider {2, 4, 5, 8} with 5 as the marked element. Here are a few ways that could be stored:

    5                   5                5

  /  |  \              /    \              |

2  4   8           2     8            8

                      |                   /  \

                      4                 4   2

We can actually store a disjoint set in an array. For example, the sets {2,4,5,8}, {1}, {3,6,7} could be stored as follows:

	1
	5
	7
	5
	5
	7
	7
	2


     1

2
     3

 4
      5            6            7            8

The 5 stored in array location 2 signifies that 5 is 2's parent. The 2 in array location 8 signifies that 2 is 8's parent, etc.

Here is the visual display:

1

5                      7

               /      \                /     \


    2        4             3      6

             |

            8

Based on this storage scheme, how can do implement the initial makeset algorithm and how can we implement a findset algorithm?

Union Operation

Given two values, we must first find the markers for those two values, then merge those two trees into one.

Consider union(5,1). We could do either of the following:

     1

5

      |         /  |  \

     5        2  4  1

   /    \      |

  2    4    8

  |

 8

We prefer the latter since it minimizes the height of the tree. Thus, in order to implement our disjoint sets efficiently, we must also keep track of the height of each tree, so we know how to do our merges. Basically we choose which tree to merge with which based on which tree has a smaller height. If they are equal we are forced to add 1 to the height of the new tree.

Here is how our array will change for each of the options above:

First option

	1
	5
	7
	5
	1
	7
	7
	2


     1

2
     3

 4
      5            6            7            8

Second option

	5
	5
	7
	5
	5
	7
	7
	2


     1

2
     3

 4
      5            6            7            8

Notice how quickly we can implement that change in the array!

Path Compression

One last enhancement we can add to disjoint sets is path compression. Every time we are forced to do a findset operation, we can directly connect each node on the path from the original node to the root. Here's the basic idea:

     1

final tree is

1

      |                                            /   |   \

     5                                          2   8   5

   /    \                                                   |

  2    4                                                  4

  |

 8

	1
	5
	7
	5
	1
	7
	7
	2


     1

2
     3

 4
      5            6            7            8

First, you find the root of this tree which is 1. Then you go through the path again, starting at 8, changing the parent of each of the nodes on that path to 1.

	1
	5
	7
	5
	1
	7
	7
	1


     1

2
     3

 4
      5            6            7            8

then, you take the 2 that was previously stored in index 8, and then change the value in that index to 1:

	1
	1
	7
	5
	1
	7
	7
	1


     1

2
     3

 4
      5            6            7            8

It has been shown through complicated analysis that the worst case running time of t operations is O(t((t,n)). Note that ((t,n) ( 4 for all n ( 1019728, so for all practical purposes on average, each operation takes constant time.

