Programming Team Lecture: Dynamic Programming

Standard Algorithms to Know

Computing Binomial Coefficients (Brassard 8.1)

World Series Problem (Brassard 8.1)

Making Change (Brassard 8.2)

Knapsack (Brassard 8.4 Goodrich 5.3)

Subset Sum (special instance of knapsack where weights=values)

Floyd-Warshall's (Brassard 8.5 Cormen 26.2)

Chained Matrix Multiplication (Brassard 8.6, Cormen 16.1 Goodrich 5.3)

Longest Common Subsequence (Cormen 16.3)

Edit Distance (Skiena 11.2)

Polygon Triangulation (Cormen 16.4)

Example #1: Binomial Coefficients

There is a direct formula for calculating binomial coefficients, it's
[image: image1.wmf])!

(

!

!

k

n

k

n

k

n

-

=

÷

÷

ø

ö

ç

ç

è

æ

.

However, it's instructive to calculate binomial coefficients using dynamic programming since the technique can be used to calculate answers to counting questions that don't have a simple closed-form formula.

The recursive formula for binomial coefficients is
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

k

n

k

n

k

n

1

1

1

, with
[image: image3.wmf]1

0

=

÷

÷

ø

ö

ç

ç

è

æ

=

÷

÷

ø

ö

ç

ç

è

æ

n

n

n

.

In code, this would look roughly like this:

int combo(int n, int k) {

 if (n == 0 || n == k)

 return 1;

 else

 return combo(n-1,k-1)+combo(n-1,k);

}

However, this ends up repeating many instances of recursive calls, and ends up being very slow. We can implement a dynamic programming solution by creating a two dimensional array which stores all the values in Pascal's triangle. When we need to make a recursive call, instead, we can simply look up the answer in the array. To turn a recursive solution into a DP one, here's what has to be done:

a) Characterize all possible input values to the function and create an array to store the answer to each possible problem instance that is necessary to solve the problem at hand.

b) Seed the array with the initial values based on the base cases in the recursive solution.

c) Fill in the array (in an order so that you are always looking up array slots that are already filled) using the recursive formula, but instead of making a recursive call, look up that value in the array where it should be stored.

In pseudocode, here's how binomial combinations can be computed using dynamic programming:

int combo(int n, int k) {

 int pascaltri[][] = new int[n+1][n+1];

 for (int i=0; i<n+1; i++) {

 pascaltri[i][0] = 1;

 pascaltri[i][i] = 1;

 }

 for (int i=2; i<n+1; i++)

 for (int j=1; j<i; j++)

 pascaltri[i][j] = pascaltri[i-1][j-1] +

 pascaltri[i-1][j];

 return pascaltri[n][k];

}

The key idea here is that pascaltri[i][j] always stores
[image: image4.wmf]÷

÷

ø

ö

ç

ç

è

æ

j

i

. Since we fill in the array in increasing order, by the time we look up values in the array, they are already there. Basically, what we are doing, is building up the answers to subproblems from small to large and then using the smaller answers as needed.
Example #2: Subset Sum

Problem: Given a set of numbers, S, and a target value T, determine whether or not a subset of the values in S adds up exactly to T.

Variations on the Problem:

a) List the set of values that add up to the target.

b) Allow for multiple copies of each item in S.

The recursive solution looks something like this:

SubsetSum(Set S, int Target) {

 if (Target == 0) return true;

 else if (S == empty) return false;

 else

 return SubsetSum(S – {S[length-1]}, Target) ||

 SubsetSum(S – {S[length-1]}, Target-S[length-1]);

}

The basic idea is as follows: All subsets of S either contain S[length-1] or don't contain that idea. If a subset exists that adds up to T, then we have two choices:

a) Don't take the value

b) Take the value

If we don't take the value, then if we want an overall subset that adds up to T, we must find a subset of the rest of the elements that adds up to T.

If we do take the value, then we want to add that element, to a subset of the rest of the set that adds up to T minus the value taken.

These cases, a and b, correspond to the two recursive calls.

Now, to turn this into dynamic programming.

If you take a look at the structure of the recursive calls, the key input parameter is the target value. What we could do, is just store whether or not we've seen a subset that adds to a particular value in a boolean array. Then, we can iterate through each element and update our array as necessary.

The solution roughly looks like this:

boolean[] foundIt = new boolean[T+1];

foundIt[0] = true;

for (int i=1; i<T+1; i++) foundIt[i] = false;

for (int i=0; i<S.length; i++) {

 for (int j=T; j>=S[i]; j--)

 if (foundIt[j – S[i]])

 foundIt[j];

}

If we want to remember which values make up the subset, then instead of a boolean array, store an integer array, and in each index, just store the last value that you added to the set to get you there.

int[] Subset = new int[T+1];

for (int i=0; i<T+1; i++) Subset[i] = 0;

for (int i=0; i<S.length; i++) {

 for (int j=T; j>=S[i]; j--)

 if (Subset[j – S[i]] != 0 || j == S[i])

 Subset[j] = S[i];

}

From here, to recreate the set, you can just "jump" backwards through the integer array. If Subset[15] = 3, then 3 is an element that adds up to 15. Then you take 15 – 3 to get 12 and look at Subset[12]. If this is 7, for example, then 7 is in the set too, and then you can look at Subset[5]. If this is 5, then that means that your set that added up to 15 was 3, 7 and 5.

Finally, if we want to allow mutiple copies of each element, run the inner for loop forwards. Can you see why that works?

for (int i=0; i<S.length; i++) {

 for (int j=S[i]; j<=T; j++)

 if (Subset[j – S[i]] != 0 || j == S[i])

 Subset[j] = S[i];

}

The Matrix Chain Problem

Given a chain of matrices to multiply, determine the how the matrices should be parenthesized to minimize the number of single element multiplications involved.

First off, it should be noted that matrix multiplication is associative, but not commutative. But since it is associative, we always have:

((AB)(CD)) = (A(B(CD)))

or equality for any such grouping as long as the matrices in the product appear in the same order.

It may appear on the surface that the amount of work done won't change if you change the parenthesization of the expression, but we can prove that is not the case with the following example:

Let A be a 2x10 matrix

Let B be a 10x50 matrix

Let C be a 50x20 matrix

Note that any matrix multiplication between a matrix with dimensions ixj and another with dimensions jxk will perform ixjxk element multiplications creating an answer that is a matrix with dimensions ixk. Also note that the second dimension in the first matrix and the first dimension in the second matrix must be equal in order to allow matrix multiplication.

Consider computing A(BC):

multiplications for (BC) = 10x50x20 = 10000, creating a 10x20 answer matrix

multiplications for A(BC) = 2x10x20 = 400,

Total multiplications = 10000 + 400 = 10400.

Consider computing (AB)C:

multiplications for (AB) = 2x10x50 = 1000, creating a 2x50 answer matrix

multiplications for (AB)C = 2x50x20 = 2000,

Total multiplications = 1000 + 2000 = 3000, a significant difference.

Thus, the goal of the problem is given a chain of matrices to multiply, determine the fewest number of multiplications necessary to compute the product. We will formally define the problem below:

Let A = A0(A1(... An-1
Let Ni,j denote the minimal number of multiplications necessary to find the product Ai(Ai+1(... Aj. And let dixdi+1 denote the dimensions of matrix Ai.

We must attempt to determine the minimal number of multiplications necessary(N0,n-1) to find A, assuming that we simply do each single matrix multiplication in the standard method.

The key to solving this problem is noticing the sub-problem optimality condition:

If a particular parenthesization of the whole product is optimal, then any sub-parenthesization in that product is optimal as well. Consider the following illustration:

Assume that we are calculating ABCDEF and that the following parenthesization is optimal:

(A (B ((CD) (EF))))

Then it is necessarily the case that

(B ((CD) (EF)))

is the optimal parenthesization of BCDEF.

Why is this?

Because if it wasn't, and say (((BC) (DE)) F) was better, then it would also follow that

(A (((BC) (DE)) F)) was better than

(A (B ((CD) (EF)))), contradicting its optimality.

This line of reasoning is nearly identical to the reasoning we used when deriving Floyd-Warshall's algorithm.

Now, we must make one more KEY observation before we design our algorithm:

Our final multiplication will ALWAYS be of the form

(A0(A1(... Ak) ((Ak+1(Ak+2(... An-1)

In essence, there is exactly one value of k for which we should "split" our work into two separate cases so that we get an optimal result. Here is a list of the cases to choose from:

(A0) ((A1(Ak+2(... An-1)

(A0(A1) ((A2(Ak+2(... An-1)

(A0(A1(A2) ((A3(Ak+2(... An-1)

...

(A0(A1(... An-3) ((An-2 (An-1)
(A0(A1(... An-2) ((An-1)

Basically, count the number of multiplications in each of these choices and pick the minimum. One other point to notice is that you have to account for the minimum number of multiplications in each of the two products.

Consider the case multiplying these 4 matrices:

A: 2x4

B: 4x2

C: 2x3

D: 3x1

1. (A)(BCD) - This is a 2x4 multiplied by a 4x1,

 so 2x4x1 = 8 multiplications, plus whatever

 work it will take to multiply (BCD).

2. (AB)(CD) - This is a 2x2 multiplied by a 2x1,

 so 2x2x1 = 4 multiplications, plus whatever

 work it will take to multiply (AB) and (CD).

3. (ABC)(D) - This is a 2x3 multiplied by a 3x1,

 so 2x3x1 = 6 multiplications, plus whatever

 work it will take to multiply (ABC).

Thus, we can state the following recursive formula:

Ni,j = min value of Ni,k + Nk+1,j + didk+1dj+1, over all

 valid values of k.

One way we can think about turning this recursive formula into a dynamic programming solution is by deciding which sub-problems are necessary to solve first. Clearly it's necessary to solve the smaller problems before the larger ones. In particular, we need to know Ni,i+1, the number of multiplications to multiply any adjacent pair of matrices before we move onto larger tasks. Similarly, the next task we want to solve is finding all the values of the form Ni,i+2, then Ni,i+3, etc. So here is our algorithm:

1) Initialize N[i][i] = 0, and all other entries in N to (.

2) for i=1 to n-1 do the following

2i) for j=0 to n-1-i do

2ii) for k=j to j+i-1

2iii) if (N[j][j+i-1] >

 N[j][k]+N[k+1][j+i-1]+djdk+1di+j)

N[j][j+i-1]=

 N[j][k]+N[k+1][j+i-1]+djdk+1di+j
Here is the example we worked through in class:

Matrix
Dimensions

A

2x4

B

4x2

C

2x3

D

3x1

E

1x4

	
	A
	B
	C
	D
	E

	A
	0
	16
	28
	22
	30

	B
	
	0
	24
	14
	30

	C
	
	
	0
	6
	14

	D
	
	
	
	0
	12

	E
	
	
	
	
	0

First we determine the number of multiplications necessary for 2 matrices:

AxB uses 2x4x2 = 16 multiplications

BxC uses 4x2x3 = 24 multiplications

CxD uses 2x3x1 = 6 multiplications

DxE uses 3x1x4 = 12 multiplications

Now, let's determine the number of multiplications necessary for 3 matrices

(AxB)xC uses 16 + 0 + 2x2x3 = 28 multiplications

Ax(BxC) uses 0 + 24 + 2x4x3 = 48 multiplications, so 28 is min.

(BxC)xD uses 24 + 0 + 4x3x1 = 36 multiplications

Bx(CxD) uses 0 + 6 + 4x2x1 = 14 multiplications, is 14 is min.

(CxD)xE uses 6 + 0 + 2x1x4 = 14 multiplications

Cx(DxE) uses 0 + 12 + 2x3x4 = 36, so 14 is min.

Four matrices next:

Ax(BxCxD) uses 0 + 14 + 2x4x1 = 22 multiplications

(AxB)x(CxD) uses 16 + 6 + 2x2x1 = 26 multiplications

(AxBxC)xD uses 28 + 0 + 2x3x1 = 34 multiplications, 22 is min.

Bx(CxDxE) uses 0 + 14 + 4x2x4 = 46 multiplications

(BxC)x(DxE) uses 24 + 12 + 4x3x4 = 84 multiplications

(BxCxD)xE uses 14 + 0 + 4x1x4 = 30 multiplications, 30 is min.

For the answer:

Ax(BxCxDxE) uses 0 + 30 + 2x4x4 = 62 multiplications

(AxB)x(CxDxE) uses 16 + 14 + 2x2x4 = 46 multiplications

(AxBxC)x(DxE) uses 28 + 12 + 2x3x4 = 64 multiplications

(AxBxCxD)xE uses 22 + 0 + 2x1x4 = 30 multiplications

Answer = 30 multiplications

Homework Problems from acm.uva.es site

10131, 10069, 10154, 116, 10003, 10261, 10271, 10201

Attached Problems

2004 Greater New York Regional – Lenny's Lucky Lotto Lists

2004 South American Regional – Land Division Tax

References

Brassard, Gilles & Bratley, Paul. Fundamentals of Algorithmics (text for COT5405)

Prentice Hall, New Jersey 1996 ISBN 0-13-335068-1

Cormen, Tom, Leiserson, Charles, & Rivest, Ronald. Introduction to Algorithms

The MIT Press,Cambridge, MA 1992 ISBN 0-262-03141-8 (a newer version exists)

Goodrich, Michael & Tamassia, Roberto. Algorithm Design (text for COP3530)

John Wiley & Sons, New York 2002 ISBN 0-471-38365-1

Skiena, Steven & Revilla, Miguel. Programming Challenges

Springer-Verlag, New York 2003 ISBN 0-387-00163-8

_1252498766.unknown

_1252498793.unknown

_1252499280.unknown

_1252498684.unknown

