Programming Team Lecture: Dynamic Programming

Standard Algorithms to Know

Computing Binomial Coefficients (Brassard 8.1)

World Series Problem (Brassard 8.1)

Making Change (Brassard 8.2)

Knapsack (Brassard 8.4 Goodrich 5.3)

Subset Sum (special instance of knapsack where weights=values)

Floyd-Warshall's (Brassard 8.5 Cormen 26.2)

Chained Matrix Multiplication (Brassard 8.6, Cormen 16.1 Goodrich 5.3)

Longest Common Subsequence (Cormen 16.3)

Edit Distance (Skiena 11.2)

Polygon Triangulation (Cormen 16.4)

Example #1: Binomial Coefficients

There is a direct formula for calculating binomial coefficients, it's 
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However, it's instructive to calculate binomial coefficients using dynamic programming since the technique can be used to calculate answers to counting questions that don't have a simple closed-form formula.

The recursive formula for binomial coefficients is 
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In code, this would look roughly like this:

int combo(int n, int k) {

  if (n == 0 || n == k)

    return 1;

  else

    return combo(n-1,k-1)+combo(n-1,k);

}

However, this ends up repeating many instances of recursive calls, and ends up being very slow. We can implement a dynamic programming solution by creating a two dimensional array which stores all the values in Pascal's triangle. When we need to make a recursive call, instead, we can simply look up the answer in the array. To turn a recursive solution into a DP one, here's what has to be done:

a) Characterize all possible input values to the function and create an array to store the answer to each possible problem instance that is necessary to solve the problem at hand.

b) Seed the array with the initial values based on the base cases in the recursive solution.

c) Fill in the array (in an order so that you are always looking up array slots that are already filled) using the recursive formula, but instead of making a recursive call, look up that value in the array where it should be stored.

In pseudocode, here's how binomial combinations can be computed using dynamic programming:

int combo(int n, int k) {

  int pascaltri[][] = new int[n+1][n+1];

  for (int i=0; i<n+1; i++) {

    pascaltri[i][0] = 1;

    pascaltri[i][i] = 1;

  }

  for (int i=2; i<n+1; i++) 

    for (int j=1; j<i; j++)

      pascaltri[i][j] = pascaltri[i-1][j-1] +

                        pascaltri[i-1][j];

  return pascaltri[n][k];

}

The key idea here is that pascaltri[i][j] always stores 
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. Since we fill in the array in increasing order, by the time we look up values in the array, they are already there. Basically, what we are doing, is building up the answers to subproblems from small to large and then using the smaller answers as needed.
Example #2: Subset Sum

Problem: Given a set of numbers, S, and a target value T, determine whether or not a subset of the values in S adds up exactly to T. 

Variations on the Problem:

a) List the set of values that add up to the target.

b) Allow for multiple copies of each item in S.

The recursive solution looks something like this:

SubsetSum(Set S, int Target) {

  if (Target == 0) return true;

  else if (S == empty) return false;

  else

    return SubsetSum(S – {S[length-1]}, Target) ||

          SubsetSum(S – {S[length-1]}, Target-S[length-1]);

}

The basic idea is as follows: All subsets of S either contain S[length-1] or don't contain that idea. If a subset exists that adds up to T, then we have two choices:

a) Don't take the value

b) Take the value

If we don't take the value, then if we want an overall subset that adds up to T, we must find a subset of the rest of the elements that adds up to T.

If we do take the value, then we want to add that element, to a subset of the rest of the set that adds up to T minus the value taken.

These cases, a and b, correspond to the two recursive calls. 

Now, to turn this into dynamic programming.

If you take a look at the structure of the recursive calls, the key input parameter is the target value. What we could do, is just store whether or not we've seen a subset that adds to a particular value in a boolean array. Then, we can iterate through each element and update our array as necessary. 

The solution roughly looks like this:

boolean[] foundIt = new boolean[T+1];

foundIt[0] = true;

for (int i=1; i<T+1; i++) foundIt[i] = false;

for (int i=0; i<S.length; i++) {

   for (int j=T; j>=S[i]; j--)

      if (foundIt[j – S[i]])

          foundIt[j];

}

If we want to remember which values make up the subset, then instead of a boolean array, store an integer array, and in each index, just store the last value that you added to the set to get you there.

int[] Subset = new int[T+1];

for (int i=0; i<T+1; i++) Subset[i] = 0;

for (int i=0; i<S.length; i++) {

   for (int j=T; j>=S[i]; j--)

      if (Subset[j – S[i]] != 0 || j == S[i])

          Subset[j] = S[i];

}

From here, to recreate the set, you can just "jump" backwards through the integer array. If Subset[15] = 3, then 3 is an element that adds up to 15. Then you take 15 – 3 to get 12 and look at Subset[12]. If this is 7, for example, then 7 is in the set too, and then you can look at Subset[5]. If this is 5, then that means that your set that added up to 15 was 3, 7 and 5.

Finally, if we want to allow mutiple copies of each element, run the inner for loop forwards. Can you see why that works?

for (int i=0; i<S.length; i++) {

   for (int j=S[i]; j<=T; j++)

      if (Subset[j – S[i]] != 0 || j == S[i])

          Subset[j] = S[i];

}

Problems from acm.uva.es site

10131, 10069, 10154, 116, 10003, 10261, 10271, 10201

Take a look at these problems for more practice on dynamic programming.
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