Thirteenth Annual
University of Central Florida

High School
Programming Tournament:
Online Edition

Problems — Division 2

Problem Name Filename
Combine Me! combine

Mutual Friends mutual
Passing Notes notes
Rhino Rampage rhino

Movie Sequel sequel

Suspicious Shapeshifter shapeshifter

Skipping Stones stones
Sugar Honeycomb sugar

Zigzag Palindrome zigzag

Call your program file:

filename.cpp, filename.java, or filename.py

For example, if you are solving Zigzag Palindrome,
Call your program file:

zigzag.cpp, zigzag.java, or zigzag.py
Call your Java class: zigzag

Combine Me!

Filename: combine

Ryan is playing a Battle Royale word game. In this game, you are given a list of words, and you
must pick two different words and concatenate them together. Your score is equal to the number
of distinct characters in the combined word.

The Problem:

Ryan would like to know for the given list of words, what two words he should pick to maximize
his score?

The Input:

The first line of input will contain a single, positive integer, ¢, representing the number of rounds
Ryan played. For each round, several lines will follow. The first line for each round will contain
a single integer, n (2 < n < 100), representing the number of words provided in the round. The
following # lines each contain a string, s (of length between 1 and 100, inclusive), of lowercase
letters, representing each of the words.

The Output:

For each round, output a single line containing the two chosen words separated by a single space.
If there are multiple correct answers, any of them will be accepted.

Sample Input:

2

8

buy
freeze
squeeze
roll
juice
combine
pill
sell

3

abc

a
b
Sample Output:

squeeze combine
abc a

Mutual Friends

Filename: mutual

You have been hired to work at Facebook, which is a company name that is completely original
and fictional because there is no company that is named like that right now. Your first task is to
implement a mutual friends algorithm. There are n accounts on the website. You need to find the
mutual friends between the CEO (account #1) and you (account #n).

A mutual friend between you and the CEO is any account, which is friends with you and the
CEO.

The Problem:

Given a list of friendship relations between two accounts and the total number of accounts on the
website, find the mutual friends between your account and the CEO.

The Input:

The first line of input will be a single, positive integer, ¢, representing the number of test cases.
Each test case begins with two integers, n and m (2 <n < 100; 1 <m <200), representing the
number of accounts and the number of friend relationships on the website, respectively. Then
m lines follow, each containing a pair of integers, u and v (1 <u < n; 1 <v <n), denoting that
account u and v are friends. It is guaranteed that no account will be friends with itself, and no
friendship pairs will show up multiple times within a test case. For example, if a test case
contains the pair “1 27, it will only be provided once, and “2 1”” will not be included (as it is
redundant information).

The Output:

For each test case, first output on a line by itself a single integer, k, denoting the number of
mutual friends. Then, follow this with £ lines, each containing the account ID of the mutual
friends. The account IDs can be given in any order. Output a blank line after the output for each
test case.

(Sample Input and Sample Output follow on next page)

Sample Input:

10 10

(@)
—
—

N M O

AN M < W0 O 1 NI~ AN AN
O O O O

A H O N AW A A NN AL W0

Sample Output:

M AN ™M <

O

N

Passing Notes

Filename: notes

O.M.G! Can you believe what Jordan said to Alex at lunch today?! I totally can’t wait to tell my
B.F.F.O0.U.C. (Best Friend Forever, Or Until College) in math class today! The thing is, though,
Mr. Davis is tooootally a drag, and like, he doesn’t let us talk in class! That’s, like, legit lame.
Anyway, I’m gonna pass a note to my bestie, but some of those dweebs along the way might get
caught! If I tell you how likely each one of them is to get caught, could you, like, tell me the
chances my note gets through? That would totally rock!

The Problem:

Given the deets on the classmates between me and my B.F.F.O.U.C., tell me the chances my
note gets through! Uh, I mean, please.

The Input:

The first line of the input will contain a single, positive integer, ¢, representing the number of
notes. Each note will be defined across two lines. The first line of each note will contain a
single integer, n (0 <n < 10), representing the number of classmates to pass notes. The next line
will contain 7 integers from 0 to 100, the percentage chance that each classmate will get caught.

The Output:

For each note, output a line containing a single integer, the percentage chance the note gets
through every classmate. Round down to the nearest percentage point.

Sample Input:

3

3
50 10 10
4
202 2
3

5 100 5

Sample Output:

40
94
0

Rhino Rampage

Filename: rhino

In the auto-battler Super Auto Pets, players select a team of animals in a row, and then the teams
clash, dealing damage to one another until one animal remains. The rules of the game are as
follows. First, each animal has an attack value and a health value. Then, the animals at the front
of the lines both simultaneously attack each other, each dealing its own attack to the other,
removing that value from the opponent animal’s health. If one or both of the animals’ health
drops to zero (or below zero), the animal is Knocked Out, and the next animal behind it in line
comes up to take its place. A player wins once they have a surviving animal but their opponent
does not.

The Rhino has a special ability that when it knocks out an opponent (and survives) it deals 5
damage to the new enemy in the front. This will chain, so if the rhino knocks out an opponent, it
will deal 5 damage to the new enemy in front, and if that enemy is knocked out, it will deal 5
damage to the next, etc. until the entire enemy team is wiped out, or one of the enemies survives
the hit. You and your friend both love rhinos, and have a team with only rhinos. The problem is,
the game animations can take a long time to run, so you want to write a program to determine
which team will win.

The Problem:

Given the stats of your team and your opponent’s team, determine the winner of the all-rhino
matchup.

The Input:

The first line of the input will contain a single, positive integer, g, representing the number of
games you and your friend played. The first line of each game will contain two integers, n and m
(1<n<1,000; 1 <m <1,000), representing the number of rhinos on your team and the number
of rhinos on your opponent’s team, respectively. The next # lines will contain two integers, a.
and 4. (1 <a < 1,000; 1 <k <1,000), the attack and health, respectively, of your i rhino from
the front to the back of the line, respectively. Then, m lines will follow, each line containing two
integers in the same format, denoting the attack and health of your opponent’s rhinos.

The Output:

For each game, output a line containing either "I win!"or"You win!" depending on who
won. If both players lose their last animal on the same turn, output "Draw!” instead.

(Sample Input and Sample Output follow on next page)

Sample Input:

8 1
9

NP WbhhEPERPRPEPRONE WN
WUl WwWwrEFEkEORFE WbdDN

Sample Output:

You win!
Draw!

Movie Sequel

Filename: sequel

It’s a common trope that movie sequels are never as good as the original, but their names can be
quite compelling. The production company knows that fans love to see their favorite characters
return to the screen, so they’ve decided to stick to a simple naming scheme for their sequels.
They need you to write a program to generate these sequel names.

The Problem:
Given the title of the original movie, generate the title of the sequel using the following format:

<Original Title> 2: Return of The <Original Title>

The output must match this naming scheme exactly.
The Input:

The first line of input contains a single, positive integer, #, representing the number of movies.
Each movie contains a single string, the name of the original movie. The string may contain any
letters or punctuation, but it will not contain any spaces. Its length will be between 1 and 100
characters (inclusive).

The Output:
For each movie, output a single line containing the name of the sequel using the specified format.
Sample Input:

3
Octagon
X-Ray
Knights

Sample Output:

Octagon 2: Return of The Octagon!
X-Ray 2: Return of The X-Ray!
Knights 2: Return of the Knights!

Suscipious Shapeshifter

Filename: shapeshifter

There is a shapeshifter among us! This shapeshifter is able to take any form as long as they
maintain the same area (we all live in a 2D plane after all!). Crew members can be modeled by
circles, and we absolutely despise anything square. Recently several of the crew members have
been found in square-shock, a fate worse than death! In order to figure out who our shapeshifter
must be, we need to know what the shapeshifter's side length must be if they shapeshifted into a
square. Given a bunch of crew member’s radii, can you help us determine what the
corresponding side length of the square must be?

The Problem:

Given the radius of a crew member, determine what the side length of their square form must be
assuming that area is conserved.

The Input:

The first line will consist of a single integer, ¢, the number of crew members to investigate. The
following c lines will consist of a single integer, 7 (1 < r < 10°), the radius of the crew member.

The Output:

Print ¢ lines each consisting of the side length of the shapeshifting square. Answers within
absolute or relative error of 10 of the judge answer will be accepted.

Sample Input:

= O = W

Sample Output:

1.772453851
8.862269255
21.269446211

Skipping Stones

Filename: stones

Alice and Bob have decided to skip stones at the lake on a beautiful sunny day. Alice gathered n
piles of stones and Bob gathered m piles of stones. However, before they start skipping stones,
Alice is afraid that Bob might have a greater total amount of stones and therefore will have more
fun than her.

The Problem:

Given Alice has n piles of stones where a; (1 <i < n) represents that there are 27 stones (where
p = a;) in each of Alice’s pile and given Bob has m piles of stones where b, (1 <j < m) represents
that there are 29 stones (where g = b)) in each of Bob’s pile, find out who has more stones in total.

The Input:

The first line of the input will contain a single, positive integer, d, representing the number of
days Alice and Bob have decided to skip stones. For each day d there will be 4 lines of input.
The first will contain an integer, n (1 < n < 10°), representing the number of piles of stones Alice
has. On the following line will be 7 integers separated by spaces, where if the ith (1 <i < n) pile
has an integer x (1 <x < 10?), then this indicates that there are 2* stones in Alice’s ith pile.
Following this will be a single integer, m (1 < m < 10°), representing the number of piles of
stones Bob has. On the following line will be m integers separated by spaces, where if the jth

(1 <j <n) pile has an integer y (1 <y < 10°), then this indicates that there are 2’ stones in Bob’s
jth pile.

The Output:
For each day, output one line.

If Alice has more total stones than Bob, output: "Alice will have more fun!" If Bob
has more stones than Alice, output: "Bob will have more fun!" Ifthey have the same
number of stones, output: "Tie!"

(Sample Input and Sample Output follow on next page)

10

Sample Input:

2

2

100 200

5

101 102 103 104 105
4

w N N

Sample Output:

Alice will have more fun!
Tie!

11

Sugar Honeycomb

Filename: sugar

Willy Wunko is up to his usual shenanigans in his candy factory. By melting some sugar and
adding some baking soda (along with some secret ingredients) he created his latest product:
Sugar Honeycombs! To make things more interesting he decided to stamp a shape on each
honeycomb and if that shape is successfully carved out, a sweet burst of flavor is magically
added. However, if the shape fails to be carved out, a repulsive flavor is added.

Recently you and several other people have won an all inclusive tour of Willy Wunko’s factory.
At one of the stops on the tour, Willy Wunko lets you all choose a Sugar Honeycomb to try.
After seeing the tragedy that befell in the previous room of the tour, you want to ensure that you
get the easiest shape to carve out. You notice that shapes with more long and thin portions tend
to have a higher perimeter to area ratio and are harder to carve out. Based on this ratio, you want
to rank the possible candy shapes from easiest to hardest to carve out.

Due to recent circumstances, the Universal Candy Federation has ruled that all sugar honeycomb
shapes must be represented in a rectangular grid of cells (characters) such that all points inside
the shape are represented by a ‘#’ and all points outside are represented by a .”. To gain
approval from the Universal Candy Federation, the shape must form one piece (i.e. the shape
must be fully connected). The Universal Candy Federation has defined the area of the shape as
the number of ‘#’ characters contained within the shape, and defined the perimeter as the
minimum number of horizontal or vertical cell edges needed to perfectly encompass that area.

The Problem:

Given a list of shapes represented by a rectangular grid, sort the shapes by their difficulty ratio
(perimeter/area).

The Input:

The first line will contain a single, positive integer, #, representing the number of tours you have
won. Each tour will start with a line consisting of a single integer, n (1< n < 100), representing
the number of possible shapes for the sugar honeycombs. Each shape will start off with a line
containing a string composed strictly of at most 50 lowercase letters representing the name of the
shape and integers, » and ¢ (1 <7< 100; 1 < ¢ <100), where r is the number of rows in the grid
and c is the number of columns. Each shape will have a unique name. The following 7 lines will
consist of ¢ “.” or ‘#’ characters. The outermost edges of the grid will be composed of only .~
and it is guaranteed that there will be at least one ‘#°.

The Output:

Output n lines where the i line is the i™ easiest candy to carve out. Each line starts with the
name of the candy followed by the difficulty ratio formatted as a fraction without any reduction.
The fraction format is the perimeter followed by a forward slash followed by the area. If two
shapes have the same difficulty ratio, the shape with the lower lexicographical name should be
labeled as easier. Output a blank line after the output for each tour.

12

Sample Input:

4
triangle 6 9

NS 333
SRS

R S
SRS
NS 233
S e
N £
AL H L

N S
LR
AR
AR
LR

N 5 S

Sample Output:

circle 24/24
triangle 22/16
star 36/23
umbrella 34/20

13

Zigzag Palindrome

Filename: zigzag

Daniel, the acclaimed StringPotato48, was recommended to play this brand new puzzle game
themed all around text and word analysis. The first challenge was quite rudimentary: remove all
occurrences of the letter ‘E’ from a word. The next challenge he also found quite easy: find if a
word contains another word. Daniel was getting quite bored of these easy challenges so he
decided to change to the hardest difficulty level.

He was enjoying it much more until he got to the level one boss: The Reversinator. The
Reversinator is an evil robot that could only be shutdown from the Handy Secret Puzzle
Terminal. That terminal has a set of puzzles that Daniel must solve in order to shutdown the
Reversinator. After messing around with the first puzzle, Daniel realized what the puzzles were
asking for: the longest zigzag palindromic substring.

The longest zigzag palindromic substring is the longest consecutive series of characters in a
string that obeys two properties. First it must zigzag, meaning that it alternates between strictly
increasing and strictly decreasing letters. For instance, “acbfa” is a zigzag string. Since ‘¢’
comes after ‘a’ alphabetically, it is said to be increasing. Since ‘b’ comes before ‘c’
alphabetically, it is said to be decreasing. However, “abca” is not a zigzag string since there are
two consecutive increases: ‘a’ to ‘b’ and ‘b’ to ‘c’. Also note that a zigzag string can start off
increasing or decreasing. Second, it must be palindromic, meaning that it can be read the same
forward and backwards. For instance, “racecar” and “noon” are palindromic, but “stat” is not
palindromic. So in total the longest zigzag palindromic substring is the longest consecutive set
of characters that alternates between strictly increasing and strictly decreasing and is read the
same forwards and backwards.

Daniel had no issue solving the first puzzle. He was given “obababo” and quickly identified the
solution as “babab”. However, due to the change in difficulty, Daniel is now receiving text that
is way too long for him to analyze. He has asked you to help him identify the longest zigzag
palindromic substring from the text he was given in the puzzle while he deals with the calamity
the Reversinator is causing.

The Problem:
Given a set of puzzles, determine the longest zigzag palindromic substring for each puzzle.
The Input:

The first line will contain a single, positive integer, p, representing the number of puzzles to
analyze. The next p lines will contain a single string containing less than 1,000 characters. Each
string will be composed strictly of lowercase letters and contain no spaces.

The Output:
Output a single line for each puzzle: the longest zigzag palindromic substring for that puzzle. If

there are multiple solutions, print the one that occurs earliest in the string.

14

Sample Input:

4

obababo

adsavolugsqulovaafgdf
dkljfalkfzsusakfafkldhkjydjfkl
djkfaldjfaldjfisgtgtgtgtgsikisgtgtgtgtgsia

Sample Output:

babab

olugsqulo

sus
isgtgtgtgtgsikisgtgtgtgtgsi

15

