Thirteenth Annual
University of Central Florida

High School
Programming Tournament:
Online Edition

Problems — Division 1

Problem Name Filename
Candy Tax candy

Life 1s But a Dream dream
Hold the Line line
Mutual Friends mutual
Porcupine Battles porcupine

Skipping Stones stones
Sugar Honeycomb sugar
King’s Table table

Zigzag Palindrome zigzag

Call your program file:

filename.cpp, filename.java, or filename.py

For example, if you are solving Zigzag Palindrome,
Call your program file:

zigzag.cpp, zigzag.java, or zigzag.py
Call your Java class: zigzag

Candy Tax

Filename: candy

You just finished Trick-or-Treating this Halloween. However, your parents are worried about
cavities, so they only let you keep two pieces of candy. Fortunately, you’ve found a loophole: all
the neighbors gave candy out in small goodie bags, to be more sanitary. You reason with your
parents that since they’re in goodie bags, then all the candy inside the bag counts as one. Your
parents begrudgingly agree, but on one condition: you must be able to take the candy from the
bags you choose and split them evenly amongst yourself and your siblings.

The Problem:

Given the number of candies in each goodie bag (which could be 0 if you are Tricked!), and the
number of people (yourself and your siblings), determine the maximum amount of candy you
can keep after selecting 2 bags and evenly dividing the contents amongst yourself and your
siblings.

The Input:

The first line of the input will contain a single, positive integer, y, representing the number of
years you went Trick-or-Treating. Each year will be described in two lines. The first line of
each year will contain two integers, #n and s (0 <7 < 10°; 0 < s < 10°), representing the number of
goodie bags and the number of siblings (including yourself), respectively. The next line will
contain 7 integers, a; (0 < a; < 10%), representing the number of pieces of candy in each of your
goodie bags.

The Output:

For each year, output a single integer, representing the maximum amount of candy you will be
left with after selecting two goodie bags and dividing the candy amongst yourself and your
siblings. If there is no way to do this, output 0 (since you won’t get any candy).

Sample Input:

N
N

3986

R wkEFE oD W
O 01 o1 ON

2

Sample Output:

w

Life is But a Dream

Filename: dream

In her dream tonight, Meg is floating down the river on her trusty raft. All of a sudden, she spots
a waterfall ahead! The only reasonable thing to do is quickly fashion a jetpack and fly away. As
everyone knows, jetpacks are fueled by fireballs. And just like that, # fireballs appear in the air
around Meg, each with an intensity value, a..

Meg needs to select a subset of exactly £ fireballs from the n she is given. To make sure the
jetpack flies straight, the chosen subset must obey the property that the sum of its values is equal
to the bitwise OR of its values. Meg needs your help before she is swept away: is it possible to
construct such a subset, and if so, what is the highest sum that can be achieved?

Note that a subset of an array « is defined as any combination of elements present in a. The
bitwise OR operator compares the values (in binary format) of each operand and yields a value
whose bit pattern shows which bits in either of the operands has the value 1. For example, if
given the values 33 and 13, the bitwise OR would look as follows:

100001 (decimal 33)
OR 001101 (decimal 13)
= 101101 (decimal 45)

The Problem:

Given the intensity values of » fireballs, determine the maximal sum of a subset of size & such
that the sum of its values is equal to the bitwise OR of its values.

The Input:

The first line of input contains a single, positive integer, ¢, representing the number of dreams.
For each dream, the first line contains two integers, n and & (1 <k <n <2,000), representing the
total number of fireballs and the number of fireballs that must be chosen, respectively. The
following line contains # integers, a; (1 < a; <2,000), representing the intensity value of each
fireball.

The Output:

For each dream output a single integer: the maximal sum. If no suitable subset of fireballs exists,
print "It do go down" instead.

(Sample Input and Sample Output follow on next page)

Sample Input:

W WwkF 0w
N
D
®
=
o))

10 2 5
Sample Output:

16
15
It do go down

Hold the Line

Filename: line

Bobby isn't known for his punctuality, and he often finds himself in trouble. Tonight, he woke
up and realized he is late for his dinner date! Bobby's girlfriend, tired of his perpetual lateness, is
threatening to break up with him if he can't get to the fancy restaurant across town within

¢t minutes. Walking, or even running at top speed, will be too slow this time. Bobby must buy a
subway pass!

The town where Bobby lives has n subway stations numbered 1 to n. Subway passes have
integer costs starting from 2. A pass of cost k allows access to subway station i if one of the
following conditions holds:

e iisequalto 1 (i.e. subway station 1 is accessible with a pass of any cost)
o there exists an integer, x (2 < x < k), such that i % x (the remainder when i is divided by x)
is equal to 0

For example, a pass of cost 3 allows travel through subway stations in the set union {1} U {2, 4,
6,8,10,...} U {3,6,9,12, 15, ...}.

There exist m bidirectional subway lines that connect n + 2 locations: Bobby's apartment, the
restaurant, and the n subway stations. Each subway line takes a certain amount of time to travel.
Bobby can take a subway line to a subway station s if and only if station s is accessible with the
subway pass he has. If a subway line exists from Bobby's current location to the restaurant, he
can always take that line regardless of the cost of his subway pass.

In the interest of saving money while saving his relationship, Bobby wants to buy the subway
pass with the lowest cost that allows him to travel from his apartment to the restaurant within
¢t minutes. He needs your help — and fast!

The Problem:

Given the existing subway lines connecting Bobby's apartment, the restaurant, and the » subway
stations, determine the smallest £ such that Bobby can get to his date within # minutes with a
subway pass of cost k.

The Input:

The first line of input contains a single, positive integer, ¢, representing the number of dates. The
first line of each date contains three integers, n (1 <n <200), m (1 <m <10,000) and ¢

(1 <t<10°), representing the number of subway stations, the number of subway lines, and the
amount of time Bobby’s girlfriend has allotted him, respectively. The following m lines each
contain three integers, u (0<u<n+1),v(0<v<n+1)and w (1 <w < 10°), meaning that there
exists a subway line that connects locations u and v and takes w minutes to travel. Note that the
location with index 0 is Bobby’s apartment, the locations with indices 1 to n are the n subway
stations, and the location with index » + 1 is the restaurant.

The input guarantees that no two locations will have more than one subway line connecting
them, there will never be a subway line connecting a location with itself, and there will never be
a subway line directly connecting Bobby’s apartment to the restaurant.

The Output:

Output the smallest value of k such that Bobby can get to his date within # minutes with a subway
pass of cost k. If there is no such £, print "Love isn't always on time!" instead.

Sample Input:

10
11

4

4

10

7

6

10

9

1

1
1000
1000
1000

NP ONMHNODOTWNREFE OOOWwWWw
WNhRFPF WIS DWDNDEO

Sample Output:

3
2
Love isn't always on time!

Mutual Friends

Filename: mutual

You have been hired to work at Facebook, which is a company name that is completely original
and fictional because there is no company that is named like that right now. Your first task is to
implement a mutual friends algorithm. There are n accounts on the website. You need to find the
mutual friends between the CEO (account #1) and you (account #n).

A mutual friend between you and the CEO is any account, which is friends with you and the
CEO.

The Problem:

Given a list of friendship relations between two accounts and the total number of accounts on the
website, find the mutual friends between your account and the CEO.

The Input:

The first line of input will be a single, positive integer, ¢, representing the number of test cases.
Each test case begins with two integers, n and m (2 <n < 100; 1 <m <200), representing the
number of accounts and the number of friend relationships on the website, respectively. Then
m lines follow, each containing a pair of integers, u and v (1 <u < n; 1 <v <n), denoting that
account u and v are friends. It is guaranteed that no account will be friends with itself, and no
friendship pairs will show up multiple times within a test case. For example, if a test case
contains the pair “1 27, it will only be provided once, and “2 1”” will not be included (as it is
redundant information).

The Output:

For each test case, first output on a line by itself a single integer, k, denoting the number of
mutual friends. Then, follow this with & lines, each containing the account ID of the mutual
friends. The account IDs can be given in any order. Output a blank line after the output for each
test case.

(Sample Input and Sample Output follow on next page)

Sample Input:

10 10

(@)
—
—

N M O

AN M < W0 O 1 NI~ AN AN
O O O O

A H O N AW A A NN AL W0

Sample Output:

M AN ™M <

O

N

Porcupine Battles

Filename: porcupine

Two completely different people, Jean and Pierre, have been born and raised in a similar way,
adopting and training wild porcupines for battle! Throughout the years, Jean has caught n
porcupines and Pierre has caught m porcupines. Both Jean and Pierre have fed their porcupines
fruits, vegetables, milk, chocolate, have hired giraffes, monkeys, bluebirds, tropical fish,
hatching chicks, and snails on the slow days to train the stats and levels of their porcupines.

On a bright, sunny day, Jean and Pierre stumbled across each other in the forest. Instead of
competing for porcupines to catch, they decided to settle it through a challenge. Jean and Pierre
will play a game of porcupine battles! The loser must depart from the premises.

In preparation for the battle, Jean lines up his porcupines on the left side, and Pierre lines up his
porcupines on the right side.

The rules of the game are simple:

A porcupine has an attack, health, and level stat.

The middle is defined as in between the two sides.

Jean’s porcupines are lined up on the left therefore, the porcupine of the highest index
that is still alive for Jean is considered closest to the middle.

Pierre’s porcupines are lined up on the right therefore, the porcupine of the lowest index
that is still alive for Jean is considered closest to the middle.

When a porcupine’s health drops below or is equal to 0 at any time during the day, it
erupts, immediately dealing twice its level in damage to every porcupine (including allied
porcupines). Note that this means the death of a porcupine can trigger the deaths of other
porcupines and so on.

At the beginning of a day, and following the end of any chain of eruptions, the living
porcupines closest to the middle from each team simultaneously attack the opponent’s
porcupine closest to the middle, lowering the striked porcupine’s hp by the attacking
porcupine’s attack.

The game ends if following a chain of eruptions all of at least one player’s porcupines are
dead.

The Problem:

Given the arrangement of each player’s porcupines, determine who wins, or if it is a draw! A
player wins if they have at least one standing porcupine, while all of the opponent’s have fallen.
Otherwise, it is a draw.

The Input:

The first line of the input will begin with a single, positive integer, d, representing the number of
days Jean and Pierre met. For each day, the first line contains two positive integers,
n(1<n<10° and m (1 <m < 10°), representing the number of porcupines the first player has,
and the number of porcupines the second player has, respectively. Following that are n+m lines
each containing three positive integers, a (1<a<10°), A (1 <h<10°)and / (1 <1< 10°),
representing the attack, health, and level of each porcupine, respectively. The first n of these
lines represent the porcupines of the player on the left. The next m of these lines represent the
porcupines of the player on the right..

The Output:

For each day, output a single line containing "Day #1i: " where i is the number of the day in
the input (starting with 1). Followed by "Jean!" if Jean won the round, "Pierre Wins!"if
Pierre won the round, or "Draw ! " if both players lost all their porcupines.

Sample Input:

PR WRRRPRWRRRFRWR W
dRP N JIN YR ©ON
) [

Sample Output:

Day #1: Jean Wins!
Day #2: Draw!
Day #3: Pierre Wins!

10

SKipping Stones

Filename: stones

Alice and Bob have decided to skip stones at the lake on a beautiful sunny day. Alice gathered n
piles of stones and Bob gathered m piles of stones. However, before they start skipping stones,
Alice is afraid that Bob might have a greater total amount of stones and therefore will have more
fun than her.

The Problem:

Given Alice has n piles of stones where a; (1 <i < n) represents that there are 27 stones (where
p = a;) in each of Alice’s pile and given Bob has m piles of stones where b, (1 <j < m) represents
that there are 29 stones (where g = b)) in each of Bob’s pile, find out who has more stones in total.

The Input:

The first line of the input will contain a single, positive integer, d, representing the number of
days Alice and Bob have decided to skip stones. For each day d there will be 4 lines of input.
The first will contain an integer, n (1 < n < 10°), representing the number of piles of stones Alice
has. On the following line will be 7 integers separated by spaces, where if the i (1 <i < n) pile
has an integer x (1 <x < 10°), then this indicates that there are 2* stones in Alice’s i pile.
Following this will be a single integer, m (1 < m < 10°), representing the number of piles of
stones Bob has. On the following line will be m integers separated by spaces, where if the /"

(1 <j<n) pile has an integer y (1 <y < 10%), then this indicates that there are 2’ stones in Bob’s
j pile.

The Output:
For each day, output one line.

If Alice has more total stones than Bob, output: "Alice will have more fun!" If Bob
has more stones than Alice, output: "Bob will have more fun!" Ifthey have the same
number of stones, output: "Tie!"

(Sample Input and Sample Output follow on next page)

11

Sample Input:

2

2

100 200

5

101 102 103 104 105
4

w N N

Sample Output:

Alice will have more fun!
Tie!

12

Sugar Honeycomb

Filename: sugar

Willy Wunko is up to his usual shenanigans in his candy factory. By melting some sugar and
adding some baking soda (along with some secret ingredients) he created his latest product:
Sugar Honeycombs! To make things more interesting he decided to stamp a shape on each
honeycomb and if that shape is successfully carved out, a sweet burst of flavor is magically
added. However, if the shape fails to be carved out, a repulsive flavor is added.

Recently you and several other people have won an all inclusive tour of Willy Wunko’s factory.
At one of the stops on the tour, Willy Wunko lets you all choose a Sugar Honeycomb to try.
After seeing the tragedy that befell in the previous room of the tour, you want to ensure that you
get the easiest shape to carve out. You notice that shapes with more long and thin portions tend
to have a higher perimeter to area ratio and are harder to carve out. Based on this ratio, you want
to rank the possible candy shapes from easiest to hardest to carve out.

Due to recent circumstances, the Universal Candy Federation has ruled that all sugar honeycomb
shapes must be represented in a rectangular grid of cells (characters) such that all points inside
the shape are represented by a ‘#’ and all points outside are represented by a .”. To gain
approval from the Universal Candy Federation, the shape must form one piece (i.e. the shape
must be fully connected). The Universal Candy Federation has defined the area of the shape as
the number of ‘#’ characters contained within the shape, and defined the perimeter as the
minimum number of horizontal or vertical cell edges needed to perfectly encompass that area.

The Problem:

Given a list of shapes represented by a rectangular grid, sort the shapes by their difficulty ratio
(perimeter/area).

The Input:

The first line will contain a single, positive integer, ¢, representing the number of tours you have
won. Each tour will start with a line consisting of a single integer, n (1< n < 100), representing
the number of possible shapes for the sugar honeycombs. Each shape will start off with a line
containing a string composed strictly of at most 50 lowercase letters representing the name of the
shape and integers, » and ¢ (1 <7< 100; 1 < ¢ <100), where 7 is the number of rows in the grid
and c is the number of columns. Each shape will have a unique name. The following r lines will
consist of ¢ “.” or ‘#’ characters. The outermost edges of the grid will be composed of only .~
and it is guaranteed that there will be at least one ‘#°.

The Output:

Output n lines where the i line is the i™ easiest candy to carve out. Each line starts with the
name of the candy followed by the difficulty ratio formatted as a fraction without any reduction.
The fraction format is the perimeter followed by a forward slash followed by the area. If two
shapes have the same difficulty ratio, the shape with the lower lexicographical name should be
considered as easier. Output a blank line after the output for each tour.

13

Sample Input:

4
triangle 6 9

NS 333
SRS

R S
SRS
NS 233
S e
N £
AL H L

N S
LR
AR
AR
LR

N 5 S

Sample Output:

circle 24/24
triangle 22/16
star 36/23
umbrella 34/20

14

King's Table

Filename: table

Circles are overrated! King Arthur, after having his mighty Excalibur defeated by a circular
shield, never wants to see a circle again! He has hired you to remodel his meeting room that is
filled with numerous circles, but the biggest issue is the circular table sitting in the middle of the
room. You have decided to replace this table with the next best thing: A regular polygonal table!

In order for this table to be regular, it must be equilateral and equiangular. Your plan is to build
a regular polygonal table such that each side of the table seats exactly one member of the former
round table.

After preparing to renovate this table, you remove the outer paneling and the surface of the table,
and find a quite bizarre set of table legs. These legs are made of stone (which was not in your
original set of materials you had brought) so you can only remove legs, not add legs. You want
the new table to be positioned on the remaining legs. You want to now determine how many
different ways you can remove legs such that the remaining legs form a regular polygon.

A

v

In the above image, there are 9 points (table legs) and we want to find how many regular 4-sided
polygons we can make (squares). We have 4 small diagonal squares (red), 1 large diagonal
square (blue), and 1 axis-aligned square (orange). This gives a total of 6 squares.

15

The Problem:

Given a set of leg positions, determine how many regular polygons of a certain number of sides
can be made.

The Input:

The first line of the input will be a single, positive integer, z, representing the number of tables to
renovate. Each table will start off with a line containing two integers, n and k (3 < n < 250;

3 <k <78), where n is the number of table legs and & is the number of people that must fit around
the table. Following will be # lines where the i line contains two numbers, x, and y: (jx| < 1,000;
ly] < 1,000), which denotes the x and y coordinate of the i table leg. x and y, will be a floating
point number with at most 4 decimal places. All legs will be distinct points. Two points are
distinct if the distance between their x and y coordinates vary by more than 107>,

The Output:

For each table, output a single integer representing the number of regular polygonal tables of size
k that can be made from the # table legs.

Sample Input:

2
10 3
-2 0

20
0 3.4641
4 3.

4641
-4 3.4641
0 -3.4641
-4 0
-4 -3.4641
4 -3.4641
4 0
9 4
00
0 2
11
-1 1
-2 0
-1 -1
0 -2
2 0
1 -1
Sample Output:
10
6

16

Zigzag Palindrome

Filename: zigzag

Daniel, the acclaimed StringPotato48, was recommended to play this brand new puzzle game
themed all around text and word analysis. The first challenge was quite rudimentary: remove all
occurrences of the letter ‘E’ from a word. The next challenge he also found quite easy: find if a
word contains another word. Daniel was getting quite bored of these easy challenges so he
decided to change to the hardest difficulty level.

He was enjoying it much more until he got to the level one boss: The Reversinator. The
Reversinator is an evil robot that could only be shutdown from the Handy Secret Puzzle
Terminal. That terminal has a set of puzzles that Daniel must solve in order to shutdown the
Reversinator. After messing around with the first puzzle, Daniel realized what the puzzles were
asking for: the longest zigzag palindromic substring.

The longest zigzag palindromic substring is the longest consecutive series of characters in a
string that obeys two properties. First it must zigzag, meaning that it alternates between strictly
increasing and strictly decreasing letters. For instance, “acbfa” is a zigzag string. Since ‘¢’
comes after ‘a’ alphabetically, it is said to be increasing. Since ‘b’ comes before ‘c’
alphabetically, it is said to be decreasing. However, “abca” is not a zigzag string since there are
two consecutive increases: ‘a’ to ‘b’ and ‘b’ to ‘c’. Also note that a zigzag string can start off
increasing or decreasing. Second, it must be palindromic, meaning that it can be read the same
forward and backwards. For instance, “racecar” and “noon” are palindromic, but “stat” is not
palindromic. So in total the longest zigzag palindromic substring is the longest consecutive set
of characters that alternates between strictly increasing and strictly decreasing and is read the
same forwards and backwards.

Daniel had no issue solving the first puzzle. He was given “obababo” and quickly identified the
solution as “babab”. However, due to the change in difficulty, Daniel is now receiving text that
is way too long for him to analyze. He has asked you to help him identify the longest zigzag
palindromic substring from the text he was given in the puzzle while he deals with the calamity
the Reversinator is causing.

The Problem:
Given a set of puzzles, determine the longest zigzag palindromic substring for each puzzle.
The Input:

The first line will contain a single, positive integer, p, representing the number of puzzles to
analyze. The next p lines will contain a single string containing less than 1,000 characters. Each
string will be composed strictly of lowercase letters and contain no spaces.

The Output:
Output a single line for each puzzle: the longest zigzag palindromic substring for that puzzle. If

there are multiple solutions, print the one that occurs earliest in the string.

17

Sample Input:

4

obababo

adsavolugsqulovaafgdf
dkljfalkfzsusakfafkldhkjydjfkl
djkfaldjfaldjfisgtgtgtgtgsikisgtgtgtgtgsia

Sample Output:

babab

olugsqulo

sus
isgtgtgtgtgsikisgtgtgtgtgsi

18

