
Eleventh Annual
University of Central Florida

High School
Programming Tournament:

Online Edition
Problems – Division 1

Problem Name Filename
HSPT and the Chocolate Factory chocolate

Jenny’s Number jenny
Mario’s Maze maze

Miracle Reports miracle
Radio Stations radio

RNA Decoding rna
Rock Climbing Rocks! rocks

Healing Sniper sniper
Sue in Bourbon suburban

Call your program file:

filename.c, filename.cpp, filename.java, or filename.py

For example, if you are solving Radio Stations,
Call your program file:

radio.c, radio.cpp, radio.java, or radio.py
Call your Java class: radio

 2

HSPT and the Chocolate Factory
Filename: chocolate

The members of the HSPT judges work very hard to make the contest a fun and memorable
contest. As such, Glenn, chief judge, wishes to give all the members one chocolate for each
problem on which they worked.

Each judge is given a unique ID numbered from 1 to n. This year there's an interesting property
of the judges, though: if person i and person j both worked on the same problem, it is guaranteed
that all people k such that i ≤ k ≤ j also worked on the same problem. This allows Glenn to order
the people from left-to-right in an increasing order according to their ID numbers and thus
problems to be defined by a range L to R of all the people who contributed to this problem.

Glenn has a machine that, given two numbers L and R, gives exactly one chocolate to each
person starting from L and advancing rightward going up to R. Currently, for each problem
Glenn enters the corresponding L and R values for the people who worked on the problem.
However, this can be time-consuming, and being a problem-solver himself, Glenn would like to
know the minimum number of times he has to enter values into the machine with an optimal
selection of intervals that results in each person receiving the same number of chocolates at the
end.

For example, if the final array of chocolates should be [1, 2, 2, 3, 3, 2, 2, 1], then the chocolates
could be distributed in three intervals: [1, 8], [2, 7], and [4, 5]. Therefore, Glenn can distribute
the chocolates with only three operations of the machine.

The Problem:

Given n, the number of HSPT team members, m, the number of problems, and the judges
interval, determine the minimum number of times Glenn has to operate the chocolate-giving
machine.

The Input:

The first line of input will contain a single integer, c, representing the number of contests to
process. The first line of each contest contains two integers, n and m (1 ≤ n ≤ 105; 1 ≤ m ≤ 105),
representing the highest judge ID and the number of problems, respectively. The following m
lines contain two integers, L and R (1 ≤ L ≤ R ≤ n), which represents the interval of judges that
worked on this problem.

The Output:

For each contest, output a single integer, x, on a newline, where x is the minimum number of
times Glenn has to operate the machine and still results in each person receiving the correct
number of chocolates at the end.

 3

Sample Input:

2
8 6
1 3
6 8
5 7
4 5
4 5
2 4
5 3
1 3
2 4
3 5

Sample Output:

3
3

 4

Jenny’s Number
Filename: jenny

Brice is head over heels for his crush, Jenny, a promising and beautiful Math major at UCF.
Everyone knows that Jenny’s phone number is 867-5309. Brice knows that Jenny, being
infatuated with mathematical quirks, will only enter somebody’s phone number into her phone if
they follow these three criteria:

● The number is a prime
● The next odd number is a prime
● The digits in the number are all distinct

We’ll call numbers that pass these criteria “Jenny Numbers.” As you might have figured out,
867-5309 is a Jenny number.

Brice was about to get a new phone anyway, so he figures he should make the most of it and
choose a number such that he has a chance that Jenny would put his number into her phone.

The Problem:

Given the number of digits d in a phone number, print the ith jenny number with d digits.
Leading zeroes may not count towards a number’s digit count.

The Input:

The first line of the input will contain a single integer, t, representing the number of tests. The
first line of each test will contain two integers, d and i (0 < d < 100; 0 < i < 105), representing the
number of digits in a phone number and the ith one to print, respectively.

The Output:

For each test, output the ith Jenny number with d digits, or if one does not exist, instead output
“Brice doesn't stand a chance!”

Sample Input:

2
2 3
1 9

Sample Output:

41
Brice doesn't stand a chance!

 5

Mario’s Maze
Filename: maze

Mario has just received news that Princess Peach is trapped in a far-away castle and needs to be
rescued. The castle can be represented as a rectangular grid, where each room is a single story
within the building at a floor between 1 and 9, inclusive. For whatever reason, there are no
rooms above other rooms. In addition to rooms, there are elevators, giant fans, and poles. The
elevators can transfer someone between any 2 rooms that are both adjacent (north, south, east, or
west) to the elevator, regardless of what story they are on. The fans are positioned on the ground
and blow upward, so when someone enters the space containing a fan, they are directed upward,
and thus may easily transport to a strictly higher room that is directly north, south, east, or west
of the fan. Finally, the poles can be used just like the fans, but to travel strictly downward to an
adjacent room, by sliding down like a fireman.

When Mario arrives at the castle, he may enter from any side along the border, as long as he
enters a room on the first story. He can’t enter a room with an elevator, fan, or pole from outside
the castle. Once inside, he may travel north, south, east, or west to adjacent rooms as many
times as required to reach the princess, but he can only travel to an adjacent room if it is on the
same story or a level up or down (Mario can only jump so far). Of course, Mario can also use
the elevators, fans, and poles to get around.

The princess is located on the 9th story. Once he reaches the princess, he will use a magic
mushroom to teleport them back home. Unfortunately, he only has one magic mushroom.
Otherwise, he would just use it to teleport to the princess as well.

There’s one more thing. Some of the rooms may contain poisonous gas. It may be wise for
Mario to avoid those rooms or any room that is adjacent to them (north, south, east, or west).

The Problem:

Determine if it is possible to rescue the princess while avoiding the poison gas rooms and rooms
adjacent to poisonous gas, or if Mario will have to find another way.

The Input:

The first line will contain an integer, t, the number of test cases. For every test case, there will
first be a line containing 2 integers, n and m (3 ≤ n ≤ 100; 3 ≤ m ≤ 100), representing the
dimensions of the castle, respectively. Each of the next n lines each contains m characters,
representing the rooms of the castle. A number of 1 to 9 indicates the height of the room (1 is
the first story). E means there’s an elevator in that space, F indicates a giant fan, P stands for
pole, G means there’s poisonous gas, and * is the cell where the princess is being held. It is
guaranteed that no two adjacent spaces will both contain one of the 4 special spaces (elevators,
fans, poles, or poisonous gas). Also, the princess will not be located along the border of the
castle or in a room adjacent to poisonous gas.

 6

The Output:

For each test case, output a single line: “You've got this!” if Mario can reach the princess
or “Find another way” if it’s impossible to reach her.

Sample Input:

2
9 9
955443322
96999999P
979956677
989769999
9*9699977
999799786
9G8F4561E
999392232
999991999
3 3
234
5*6
789

Sample Output:

You've got this!
Find another way

 7

Miracle Reports
Filename: miracle

“After the invention of the camera, reports of miracles decreased by 90%. After the invention of
Photoshop, reports of miracles increased by 90%.” This fact intrigued Glenn, the Miracle
Master, so he hired Ali, the Royal Reporter, to figure out how many miracles have been reported.
Glenn noticed that, even with the invention of Photoshop, overall reports of miracles still
decreased by 81%.

The Problem:

Given a list of events, which increase or decrease reports of miracles, determine if miracle
reports increased or decreased overall, and by what percentage. It is guaranteed that reports of
miracles will not remain the same.

The Input:

The first line of the input file will begin with a single positive integer, t, representing the number
of reports. Each of these reports are independent and do not affect each other. For each report,
multiple lines follow. The first contains a single integer, 1 ≤ n ≤ 25, representing the number of
events. Then, n lines follow, each consisting of a single integer, s (1 ≤ |s| ≤ 99), representing the
change in reports as a percentage. If s is negative, it is a decrease; otherwise it is an increase.

The Output:

For each report, output a value representing the overall miracle report change. The value should
be output within 0.01 absolute or relative error. Output the value as a negative value if the
change is a decrease; otherwise, output the value as a non-negative value.

Sample Input:

2
2
-90
90
4
90
-33
50
50

Sample Output:

-81.00
186.425

 8

Radio Stations
Filename: radio

Pablo likes to listen to the radio while driving, and he has several favorite stations that he
switches between by pressing the preset radio station buttons in his car. Since he will need extra
space to store his maple syrup and Tim Hortons donuts for the return trip, Pablo is getting a
rental car for his upcoming road trip to Canada. Unfortunately, since this will be his first time in
that car, the preset radio stations will likely be uninteresting to him.

Pablo’s on a tight schedule and knows he won’t have time to figure out how to change the preset
stations. Instead, he’ll use the stations that are already set as well as the seek up/down buttons,
which change the station to the next valid higher/lower station, wrapping around if it’s already
set to the highest/lowest station.

The Problem:

Please help Pablo out by telling him the optimal number of button presses needed to switch from
one station to the other.

The Input:

The first line will contain an integer, d, denoting the number of days the trip will last. For each
day, there will be several lines. The first of these lines will contain 3 integers, n, p, and s
(1 ≤ p ≤ n; 2 ≤ n ≤ 100; 1 ≤ s ≤ 100), representing the number of radio stations available that day,
the number of preset stations in the rental car, and the number of switches Pablo will perform,
respectively. The second line contains n numbers, each representing the frequency of an
available station (88 < f < 108). These numbers will be given in sorted order and will all contain
one (odd) decimal place. The third line contains p numbers, the preset radio stations. These will
also be given in sorted order and each one will be one of the n stations above. The next s lines
will each contain 2 numbers. These numbers are station frequencies from above and will be
different from each other.

The Output:

For each day, first output a single line in following format: “Day #i:” where i is the day
number, starting with 1. For each of the next s lines for that day, output the minimum number of
button presses required to switch from the first station to the second.

(Sample Input and Sample Output follow on next page)

 9

Sample Input:

2
2 1 1
88.5 107.9
88.5
88.5 107.9
11 3 3
89.9 90.1 90.5 92.3 93.7 94.9 95.3 96.7 97.5 98.3 101.1
92.3 94.9 97.5
89.9 101.1
101.1 92.3
94.9 90.1

Sample Output:

Day #1:
1

Day #2:
1
1
3

 10

RNA Decoding
Filename: rna

There is a complicated biological process that involves taking RNA (strings of nucleotides
denoted by A, U, G, C) and interpreting it to make proteins. (It’s happening inside you right now.
Unless you’re a robot. But then you wouldn’t have passed the CAPTCHA. Did we forget to
include a CAPTCHA?) Anyway, the string is grouped into non-overlapping, adjacent substrings
of length three (triples) called codons (e.g., AUG). Each codon corresponds to some amino acid.

Sometimes, reading accidentally begins at the wrong place. For example, if the whole RNA is
AUGGCCU, reading two codons starting from the second nucleotide produces UGG CCU,
which is very different from the desired AUG GCC. Luckily, multiple triplets correspond to the
same amino acid (e.g., UUC and UUU) so the chance of a different interpretation is slightly
reduced.

The Problem:

Given a long string of RNA and a read length (how many triples we want to read), as well as a
mapping from triples to amino acids (a one-to-one or many-to-one mapping), how many distinct
interpretations are there?

The Input:

Input begins with an integer, t, representing the number of test cases. For each test case, the first
line is an RNA string. Its length, n, is between 3 and 1,000,000 (inclusive). Then, 64 lines
follow: the ith line has an RNA triplet xi and an integer ai (between 1 and 20; can you believe
there is all of life and only 20 amino acids?), indicating that the codon xi maps to the amino acid
ai. Finally, there is a line containing a single integer, r (1 ≤ r ≤ n), representing the read length.
r is always a multiple of three.

The Output:

For each case, print the number of distinct decodings produced by reading a string of length r
starting at any location in the input RNA.

(Sample Input and Sample Output follow on next page)

 11

Sample Input:

1
AUGGCCU
AUG 1
GCC 2
UGG 3
GGC 4
CCU 4
AAA 5
AAU 5
AAG 5
AAC 5
AUA 5
AUU 5
AUC 5
AGA 5
AGU 5
AGG 5
AGC 5
ACA 5
ACU 5
ACG 5
ACC 5
UAA 5
UAU 5
UAG 5
UAC 5
UUA 5
UUU 5
UUG 5
UUC 5
UGA 5
UGU 5
UGC 5
UCA 5
UCU 5
UCG 5
UCC 5
GAA 5
GAU 5
GAG 5
GAC 5
GUA 5
GUU 5
GUG 5
GUC 5
GGA 5
GGU 5

 12

GGG 5
GCA 5
GCU 5
GCG 5
CAA 5
CAU 5
CAG 5
CAC 5
CUA 5
CUU 5
CUG 5
CUC 5
CGA 5
CGU 5
CGG 5
CGC 5
CCA 5
CCG 5
CCC 5
6

Sample Output:

2

 13

Rock Climbing Rocks!
Filename: rocks

Josh is an avid rock climber and rock music enthusiast (which makes for a convenient pun).
He’s going on a roadtrip to Seattle, and he wants to see as many rock walls and concerts as
possible along the way. But he only has so much time to travel, and each of these activities takes
time! Josh can decide not to visit a rock wall or concert he encounters, but he dislikes repetition;
he doesn't want to revisit a stop to which he's already been. Rock enthusiasts are very dedicated,
so concerts run at all hours of the day, and walls are open 24/7.

Josh also has the option to fly to Seattle. He only wants to take this option if there’s no possible
way he could make it to Seattle on time by driving. Unfortunately, Josh is on such a tight
schedule that he can’t figure out how many rock walls and concerts he can visit, or whether he
should just book a flight!

The Problem:

Calculate the maximum total number of rock walls and concerts Josh can visit on his trip to
Seattle or determine if Josh should fly instead.

The Input:

The first line of the input will be a single, positive integer, r, representing the number of
roadtrips. Each roadtrip will be represented by multiple lines. The first line of each roadtrip will
be contain three integers, t, a and b (1 ≤ t ≤ 109; 1 ≤ a ≤ 109; 1 ≤ b ≤ 109), representing the
amount of time Josh has to make his trip to Seattle, the amount of time required to attend a rock
wall and the amount of time to attend a concert, respectively.

The second line will contain two integers, n and m (1 ≤ n ≤ 15; n+1 ≤ m ≤ 136), representing the
number of stops before Seattle (excluding Josh’s house) and the number of roads, respectively.

The following n lines will contain information about the ith stop. Each line will contain two
integers, w and c (0 ≤ w+c ≤ 1), denoting the number of walls and concerts at the stop,
respectively.

The following m lines will contain three integers, u, v and d (0 ≤ u ≤ n+1; 0 ≤ v ≤ n+1;
1 ≤ d ≤ 109), indicating a road between u and v takes d time to travel. Josh’s house is given by
stop 0, and Seattle is given by stop n+1. All roads are bidirectional.

There is guaranteed to be some route between Josh’s house and Seattle.

The Output:

For each roadtrip, if it is possible for Josh to make it to Seattle on time, output the number of
walls and concerts he will attend. Otherwise, output the phrase “Book a flight!” with no
quotations.

 14

Sample Input:

3
15 8 1
3 6
1 0
0 1
1 0
0 1 5
0 2 2
1 3 4
2 3 1
3 4 1
0 4 6
9 1 100
4 8
0 0
0 1
0 1
0 1
0 3 4
0 2 3
3 5 2
0 1 5
2 3 2
2 4 1
4 5 3
1 3 1
100 1 1
1 2
1 0
0 1 100
1 2 100

Sample Output:

2
0
Book a flight!

 15

Healing Sniper
Filename: sniper

There are n soldiers on a battlefield arranged in a row. Some may be allied soldiers, and some
may be enemy soldiers. Ana is equipped with a healing sniper; it fires up to k specially-designed
piercing healing bullets. Each bullet i will increase the health of the first bi soldiers from the left
by 1, regardless of whether or not they are allied.

The Problem:

The strength of the allied soldiers is the sum of their health. Likewise, the strength of the enemy
soldiers is the sum of their health. Ana must make the battle as favorable as possible for her
allies. She must fire some of her bullets such that the difference between the allied strength and
the enemy strength is as high as possible.

The Input:

The first line of the input file may begin with a single positive integer, t, representing the number
of missions. For each mission, three lines follow. The first contains two integers, n and k
(1 ≤ n ≤ 105; 1 ≤ k ≤ 105), representing the number of soldiers, and the number of bullets,
respectively. The next line contains n integers, hi (-2,147,483,648 ≤ hi ≤ 2,147,483,647; h ≠ 0),
representing the current health of each soldier. If the corresponding health value is positive, then
that soldier is an ally with health hi; if the health value is negative, then that soldier is an enemy
with health |hi|. The last line contains k integers, bi (1 ≤ bi ≤ n), representing the description of
each bullet.

The Output:

For each mission, output a single line with a single integer, the maximum difference between
allied and enemy strength.

Sample Input:

2
6 5
3 -2 -4 1 5 -1
3 5 4 1 3
1 2
-1
1 1

Sample Output:

4
-1

 16

Sue in Bourbon
Filename: suburban

Sue is in charge of building a new suburban community in Bourbon County, Kentucky, and has
to perform inspections around the town to make sure everything is being built properly. The
suburbs are based on a grid, where the grid lines represent streets and each destination only lies
on the intersection of two streets. Every intersection is at a lattice point (a point where both
coordinates are integers). Sue has to drive along the streets, so depending on where the points
are she may not be able to simply drive in a straight line.

The Problem:

Given the Euclidean distance between Sue’s intersection and a destination intersection, what is
the shortest Manhattan distance that could correspond to some destination intersection?

The Input:

The first line of the input file will begin with a single positive integer, t, representing the number
of distances. For each distance, there will be a single line containing a single positive integer, x
(1 ≤ x ≤ 109), such that √𝒙𝒙 is the Euclidean distance.

The Output:

For each distance, output a single integer, the shortest possible Manhattan distance. If there is no
such possible Manhattan distance, print -1 instead.

Sample Input:

4
5
25
3
2

Sample Output:

3
5
-1
2

