
Ninth Annual
University of Central Florida

High School
Programming Tournament:

Online Edition
Problems

Problem Name Filename
Ant Colony colony

Hyper Even Numbers even
Conference Expansion expansion

Exploding Fireworks fireworks
Flooding the Tri-State Area flooding

Trapped Laptop laptop
Christmas Lights lights

Nailed It! nails
Poker Hands poker

Sharon the Slayer slayer

Call your program file:
filename.c, filename.cpp, filename.java, or filename.py

For example, if you are solving Hyper Even Numbers,

Call your program file:
even.c, even.cpp, even.java, or even.py

Call your Java class: even

 2

Ant Colony
Filename: colony

It’s a well known fact that ants build large networks of underground tunnels for their colonies.
In these colonies, there exist large open rooms, and tunnels which connect the rooms in both
directions. We are interested in a specific type of ant, which are very efficient in building their
network. Specifically, they build their network in such a way that any two rooms have exactly
one path (direct with a single tunnel, or indirect through other rooms) connecting them.

Worker ants will be tasked with transporting things from one room to another in the colony.
This is normally fine because there is always a path between any two rooms. However, recently
there has been trouble in the ant colony. Some of the tunnels are collapsing! Therefore, it might
not be possible to travel between certain pairs of rooms anymore. You will have to help the ants
out, and tell them if it’s still possible to travel between pairs of rooms. Be careful though; in
between these queries more tunnels might collapse.

The Problem:

Given the tunnels and rooms of ant colonies, process events asking if a pair of rooms is
connected, while receiving new information of collapsed tunnels.

The Input:

The first line of an input will contain a single, positive integer, m, which represents the number
of ant colonies you will have to process. Then for each ant colony, you will receive the
following set of information:First, a single line will be given consisting of an integer, n (1 ≤ n ≤
105), representing the number of rooms. Each of the next n - 1 lines contains two integers, a and
b (1 ≤ a ≤ 105; 1 ≤ b ≤ 105; a ≠ b), indicating there is a tunnel from room a to room b. The
tunnels are numbered from 1 to n - 1 in the order they are given.

The next line will contain a single integer, q (1 ≤ q ≤ 105), indicating the number of events to
process. Each of the next q lines will contain three integers, t, c, and d (1 ≤ t ≤ 2; 1 ≤ c ≤ 105;
1 ≤ d ≤ 105). If t = 1, the event indicates the tunnel from c to d collapsed (it is guaranteed there
will be an intact tunnel between room c and d immediately previous to this point). If t = 2, the
event is a query for whether room c can still reach room d.

The Output:

For each colony (in order from input), the first line of output should be “Colony #i:” where i
is the number of the colony (starting from 1). Then process each event for that colony in the
order given. For a type t = 1 event, output “Tunnel from c to d collapsed!”
(replacing c and d with the numbers of the rooms). For a type t = 2 events, output a single line of
either “Room c can reach d” or “Room c cannot reach d” (again replacing c and d
with the numbers of the rooms). After answering all of the events for a given colony, output an
extra blank line.

 3

Sample Input:

2
3
2 3
1 3
3
2 1 2
1 1 3
2 1 2
5
1 4
2 5
3 1
2 1
9
2 3 5
1 1 2
2 5 3
2 3 4
2 2 5
1 2 5
2 5 3
1 1 3
2 1 4

Sample Output:

Colony #1:
Room 1 can reach 2
Tunnel from 1 to 3 collapsed!
Room 1 cannot reach 2

Colony #2:
Room 3 can reach 5
Tunnel from 1 to 2 collapsed!
Room 5 cannot reach 3
Room 3 can reach 4
Room 2 can reach 5
Tunnel from 2 to 5 collapsed!
Room 5 cannot reach 3
Tunnel from 1 to 3 collapsed!
Room 1 can reach 4

 4

Hyper Even Numbers
Filename: even

Bash Fetchum is training his newly-caught Bulbasort. In order to beat the Elite 4 and the
Pokemon Champion, Master Coleman, he needs his Bulbasort to learn the move Hyper Beam.
However, as anyone who has ever tried to fetch ‘em all can tell you, Bulbasort only learns the
move Hyper Beam upon reaching a level that is a hyper even number.

What is a hyper even number, you ask? Well, as you know, an even number is a number that is
divisible by 2. A hyper even number is an even number that has only even factors (not including
the factor 1). Given the level of Bash’s Bulbasort, how many times does he need it to level up in
order for it to learn hyper beam?

The Problem:

Calculate the number of times Bash must level up his Bulbasort in order for it to reach the next
level that is a hyper even number.

The Input:

The first line will consist of a single integer, t, representing the number of queries of Bulbasort’s
level. This will be followed by t lines, each containing a single integer, x (1 ≤ x ≤ 109),
representing the level of Bash’s Bulbasort in question.

The Output:

Output t lines in the form “Pokemon i: y ” where i is the query (from the input) numbered
(starting with 1) and y represents the number of times Bash must level up his Bulbasort for it to
reach the next level that is a hyper even number given the ith query.

Sample Input:

4
1
2
3
268435439

Sample Output:

Pokemon 1: 1
Pokemon 2: 2
Pokemon 3: 1
Pokemon 4: 17

 5

Conference Expansion
Filename: expansion

The Big 2048 is expanding! As commissioner, your job is to add as many teams as possible to
the conference. However, there is just one problem: the current teams in the conference.
Whenever you suggest a team to be added, a vote must be taken on whether that team will be
added. If the majority of teams vote in favor, the team will be added (tied votes will fail).

Fortunately, you have already figured out the voting strategy used by every team. When a team
is suggested for expansion, every team better than that team (as indicated by their respective skill
levels) will vote against that team, in order to avoid diluting their brand. Every other team will
vote in favor. As the commissioner, you get to determine the order in which teams are suggested
to be added to the conference. In addition, teams are added one at a time, meaning every team
you successfully add will now vote on all future additions, according to the same rules as all
other teams.

The Problem:

Given a list of current team skill levels and the skill levels of potential new teams, determine the
maximum number of teams you may add to the conference.

The Input:

The first line will be a single integer, t, representing the number of expansion scenarios to
consider.

Following this will be t scenarios. In each scenario the first line will consist of two integers,
o and n (1 ≤ o ≤ 2,048; 1 ≤ n ≤ 2,048), representing the number of original teams and the number
of potential new teams, respectively. This will be followed by a line of o integers representing
the skills of the current conference teams. This, in turn, will be followed by a line of n integers
representing the skills of potential new teams to add. All skills are bounded by 1 and 10,000
inclusive.

The Output:

For each scenario, output “Expansion #i:” where i represents the scenario number (starting
with 1), followed by the maximum number of teams that may be added.

(Sample Input and Sample Output follow on next page)

 6

Sample Input:

2
2 2
1 10
5 11
5 5
5 4 3 2 1
1 2 3 4 5

Sample Output:

Expansion #1: 1
Expansion #2: 3

 7

Exploding Fireworks
Filename: fireworks

The Ultimate Collection of Fireworks (UCF) has the largest collection of fireworks in Central
Florida. UCF has large, sparkling ones; small, popping ones; and tons more.

UCF wanted to celebrate its 55th year in business this past summer, so they decided to launch
their entire fireworks inventory at once! Peter (an employee at UCF) was tasked with collecting
statistics about all of the fireworks.

It has been months since Peter’s task was due, but he still can’t get it done! Peter doesn’t have
the programming skills to process his data into cool figures and statistics; he needs you, a
programmer, to help him figure out the following: the first rocket that exploded, and the rocket
that exploded the highest.

Because UCF’s fireworks are the best in the world, each firework explodes at its maximum
height. Additionally, each explodes the instant its vertical velocity is zero. The night of the
celebration had negligible wind. All fireworks were launched from the roof of UCF’s
headquarters, a perfectly horizontal plane, at exactly the same time. The acceleration due to
gravity is constant. And because UCF will celebrate 60 years one day soon (hopefully!), make
sure you can handle multiple scenarios.

The Problem:

Given the initial velocity for each firework, output which of the fireworks explodes: (1) the
earliest after launch, and (2) the highest above the launch point.

Recall the equation 1
2
𝑎𝑎𝑡𝑡2 + 𝑣𝑣𝑣𝑣 + 𝑥𝑥0 = 𝑥𝑥(𝑡𝑡), where 𝑥𝑥 is the position (at some time 𝑡𝑡, with 𝑥𝑥(0)

being the initial position of a particle) of a particle with initial velocity 𝑣𝑣 and constant
acceleration 𝑎𝑎. Also recall that 𝑣𝑣(𝑡𝑡) = 𝑎𝑎𝑎𝑎 + 𝑣𝑣0, where 𝑣𝑣 is the velocity at time 𝑡𝑡 of a particle
with initial velocity 𝑣𝑣0 and constant acceleration 𝑎𝑎. The acceleration of gravity is 9.81 𝑚𝑚/𝑠𝑠2
towards Earth.

The Input:

The first line of input contains a single integer, t, representing the number of scenarios to follow.
For each scenario, the first line contains an integer, n (1 ≤ n ≤ 2,000), denoting the number of
fireworks to process. The next line has n distinct whole numbers where the 𝑖𝑖th number,
vi (1 ≤ vi ≤ 5,000), represents the initial velocity of the 𝑖𝑖th rocket.

The Output:

For each scenario, first output “Scenario #j:” on its own line (starting with 1). Then, on its
own line, print out “Highest Firework: i” denoting that the 𝑖𝑖th firework exploded the
highest. Then, on the next line, print “Earliest Firework: k” denoting that the 𝑘𝑘th
firework exploded the earliest. Finally, output a blank line after the output for each scenario.

 8

Sample Input:

2
2
4 3
5
8 7 6 5 9

Sample Output:

Scenario #1:
Highest Firework: 1
Earliest Firework: 2

Scenario #2:
Highest Firework: 5
Earliest Firework: 4

 9

Flooding the Tri-State Area
Filename: flooding

Doofenshmirtz M.D. is at it again! This time, he is building a tide-raising-inator to flood the tri-
state area so that everyone will have to buy his Buoyancy Operated Aquatic Transport vehicles
to drive around on water. Luckily, two middle-school kids who had nothing better to do with
their summer vacation have conveniently just finished building a triangular wall around the
entire triangular tri-state area in case of any unpredicted floods.

However, Secret Agent Perry has n secret tunnels in the tri-state area, and in order for the wall to
be effective, any tunnels that go from one side of the area to the other (i. e. tunnels that start
inside and end outside, or ones that start outside and end inside) need to be closed. Given the
bird’s-eye view coordinates of the three corners of the tri-state area wall, and the start and end
points of all of Perry’s secret tunnels, help Perry figure out how many tunnels he has to close off
to stop Doofenshmirtz’ evil plans.

The Problem:

Determine the number of secret tunnels that must be clogged for the city to not be flooded.

The Input:

The first line will contain an integer, t, representing the number of scenarios to consider. For
each scenario, the first line will contain six integers, ax, ay, bx, by, cx, and cy, representing the
coordinates of the three points of the tri-state area, a, b, and c. These points will be unique and
form a triangle with non-zero area. The next line will contain a single integer, n (1 ≤ n ≤ 104),
representing the number of secret tunnels. This will be followed by n lines, each with 4 space-
separated integers, sx, sy, ex, ey,, representing the coordinates of a secret tunnel starting at s and
ending at e. Neither s or e will fall directly on the triangle representing the tri-state area. The
absolute value of all coordinates will be no greater than 104.

The Output:

For each scenario, output a single line containing “Scenario i: x” where i is the scenario
number in the input (starting with 1), and x is the number of tunnels that must be closed.

(Sample Input and Sample Output follow on next page)

 10

Sample Input:

2
0 0 5 5 4 0
2
2 4 3 -2
4 3 3 2
0 0 5 5 4 0
1
2 1 1 2

Sample Output:

Scenario 1: 0
Scenario 2: 1

 11

Trapped Laptop
Filename: laptop

Sharon and Charles are on a field trip. Sharon, being the smart, naughty boy he is, decides to
place Charles’ laptop in a mechanical cage surrounded by n buttons, each a distance of r away
from the center. Each button lies on the vertex of a regular n-gon made by placing the caged
laptop in the center. Each button also has one of the following colors: Red (R), Green (G), or
Blue (B).

In order for Charles to retrieve his laptop, he must press all the buttons. Sharon, however, also
added this twist: all of the red buttons must be pressed before all of the green and blue buttons,
and all of the green buttons must be pressed before all of the blue buttons. If no red buttons
exist, Charles can move onto the green buttons, and likewise with green and blue buttons.
Charles can also walk over (on top of) the caged laptop if needed as the cage is not very tall and
will also protect the laptop.

Being an energy conservationist, Charles wants to walk as little as possible to press all of the
buttons in the proper order. Given the distance r and the n colored buttons in clockwise order,
find the minimum distance required for Charles to travel to press all of the buttons in a valid
order.

Charles may start at any of the buttons, and you are to find the minimum distance he travels from
the first button he presses to the last button he presses. He starts measuring distance walked as
soon as he touches a button. Also, Charles does not need to measure the distance from the last
button to his laptop.

The Problem:

Given the distance, r, which represents the distance between each button and Charles’ laptop and
the colors of n buttons, output the minimum distance required for Charles to walk in order to
press all of the buttons in a valid order.

The Input:

The first line contains a single, positive integer, t, which represents the number of scenarios.

For each scenario, the first line contains two integers, n (3 ≤ n ≤ 15) and r (1 ≤ r ≤ 2,000),
representing the number of buttons that surround the laptop and the distance between each button
and the laptop, respectively. The next line contains a string s of n characters all consisting of the
letters R, G, or B which represents the colors of the buttons in clockwise order.

The Output:

For each scenario, output “Scenario #i: d” where i is the scenario number in the input
(starting with 1) and d is the minimum distance walked (rounded to 3 decimal places; note that
0.0014 should round to 0.001 and 0.0015 should round to 0.002) required for Charles to press all
of the buttons in a proper order.

 12

Sample Input:

2
5 10
RGRBG
15 8
RGBRGBRGBRGBRGB

Sample Output:

Scenario #1: 61.554
Scenario #2: 119.508

 13

Christmas Lights
Filename: lights

Christmas is coming and it’s time to put up some lights! Unfortunately, your local homeowners
association requires that you use a new color pattern for your lights each year. That way the
neighborhood stays interesting from year to year. However, the local homeowners association
also requires that the lights contain a repeating pattern. Specifically, they require that the set of
lights can be divided into two or more consecutive groups where the order of the lights in each
group is exactly the same. Additionally, all groups must be the same size except for the last
group, which can be the same or shorter in size. For example:

 “RBGRBGRBG” contains a repeating pattern of length 3 (all groups of same size)
 “RBOWYRBOW” contains a repeating pattern of length 5 (last group is shorter)
 “RBGRG” does not contain a repeating patttern

You have created several potential patterns for your lights, but before you start putting them up
you want to make sure that you’re not going to get in trouble and be forced to change them.

The Problem:

Given a string of Christmas lights, determine if they contain a repeating pattern.

The Input:

The input will begin with a single, positive integer, n, representing the number of strings of
Christmas lights you want to check. Each of the following n lines will contain l (2 ≤ l ≤ 106)
characters with no spaces between them. The ith character represents the color of the ith
Christmas light in the pattern. All characters will be uppercase letters and each unique letter will
represent the same color (for example, an “R” will always be the same color – perhaps red).

The Output:

For each pattern output a single line with “OK” if it contains at least 1 repeating pattern, or
“MESSY” if it does not.

Sample Input:

3
RBGRBGRBG
RBOWYRBOW
RBGRG

Sample Output:

OK
OK
MESSY

 14

Nailed It!
Filename: nails

Ali loves taking photos of the UCF Programming Team! Even more than taking the photos,
though, he enjoys hanging them on the wall for all of UCF to marvel. This year, he wants to take
both his photo-hanging skills and his appreciation for the team to the next level by turning the
wall where the photos hang into a kind of art piece. Rather than hanging each photo with a
single nail, he will use a set of nails (he represents team members and coaches each with a nail).

Each picture frame has a string that extends from one corner of the frame to another, but he can
cut the length of the string to be as short or as long as he needs. Since Ali believes that each and
every person is vital to the team’s success, he wants the string to touch all of these nails in some
way, and also wants the photo to fall to the ground if any of the nails are taken out of the wall.

You are to provide Ali with a set of instructions for doing this.
There are two kinds of instructions you can give him: Rx and Lx,
which correspond to clockwise (right) and counterclockwise
(left) wrappings around nail x. The n nails are numbered from 1
to n.

For example, for n = 2, one method for hanging the frame
according to Ali’s requirements is R1 R2 L1 L2 and is shown to
the right.

The Problem:

Giving a number, n, corresponding to the number of nails in a wall, find a sequence of
instructions for wrapping a string around these nails in such a way that a photo hangs
successfully from the string after performing the steps but falls to the ground if any nails are
removed.

The Input:

The first line contains a single, positive integer, t, representing the number of photos to hang. On
each of the following t lines, there will be a single positive integer, n (1 ≤ n ≤ 80), representing
the number of nails in the wall to use in hanging that photo.

The Output:

For each picture, output a single line. Begin the line with “Picture #i: d ” where i is the
picture number in the input (starting with 1) and d is the number of commands in the sequence.
Then, print d commands from the set of commands described above, each separated by a single
space. Note that Ali’s string has a finite length so it is required that d ≤ 106. If there are multiple
ways to do this, pick any one (provided the limitation on d given).

 15

Sample Input:

2
1
2

Sample Output:

Picture #1: 1 L1
Picture #2: 4 R1 R2 L1 L2

 16

Poker Hands
Filename: poker

Poker is a very popular card game that requires both skill and luck, and is played with 2 or more
people. To start a game, each player is given 2 cards, which are hidden from their opponents.
Several cards are also placed face up for everyone to see. First, 3 cards (called the flop) are
placed on the table, then a 4th (the turn), and a 5th (the river) are placed.

Before the flop, turn, and river, all players bet on their hands (or potential hands). They can also
check (do nothing) or fold (give up). A player’s hand is determined by the best 5 cards among
the 5 face up cards and his/her 2 hidden cards. The ranking of the hands (from best to worst) are
as follows:

• Straight flush
• Four of a kind
• Full house
• Flush
• Straight
• Three of a kind
• Two pair
• Pair
• High card

Whoever has the better hand at the end of the round wins!

Ryan and Tyler like playing poker. They are great at determining what hands they have, but they
always forget the rules for determining the winner. Does a straight beat a flush? Is four of a
kind better than a full house? Help Ryan and Tyler by writing a program to solve their problem.

The Problem:

For every game of poker, determine the winner based on Ryan and Tyler’s final hand. There
will never be a tie (they already know how to handle that).

The Input:

The first line will contain a single, positive integer, g, representing the number of games Ryan
and Tyler played.

For every game, there will be two lines, each containing one of the nine options given above,
without leading or trailing spaces. The spelling and capitalization will be exactly the same as
shown above. The first of the two lines will represent the result of Ryan’s hand, and the second
will represent the result of Tyler’s. Ryan’s hand will never be the same type as Tyler’s hand.

 17

The Output:

For every game, print a single line: “Game #i: ” where i is the game number (starting with 1),
followed by the winner: “Ryan” if Ryan’s hand is better, or “Tyler” if Tyler’s hand is better.

Sample Input:

3
Flush
Straight
High card
Three of a kind
Straight flush
Pair

Sample Output:

Game #1: Ryan
Game #2: Tyler
Game #3: Ryan

 18

Sharon the Slayer
Filename: slayer

Sharon is playing a new card game, it is called “Slayers.” In this game there is a Slayer and a
Monster. Both the Slayer and the Monster have certain properties. The Monster has p hit points
and attack power a. The Slayer has his own number of hit points q and n moves at his disposal
as well as m energy points.

Each of the slayer's moves fits in one of three categories: Attack, Block, and Charge. A move is
described with three integers x, y, z, representing the move's type, power, and energy cost,
respectively. The move's type will be either 1, 2, or 3, depending on whether it is an Attack,
Block, or Charge move, respectively.

An “Attack” move strikes the Monster, reducing its hit points by y. A “Block” move increases
the Slayer's hit points by y. A “Charge” move strikes the Monster before the Monster attacks the
Slayer, reducing a monster's hit points by y, similarly to an Attack. The slayer can only use each
move once but in any order (though remember, he is still bounded by his energy).

The Monster has only a single move. When the Monster moves, it simply reduces the Slayer's
hit points by a. The game contains only a single round (yeah, weird game) and the order that
moves are played out is as follows (from first to last): any Block moves, any Charge moves, the
Monster, and finally any Attack moves. The slayer can pick any moves from his list, but the total
moves he uses must fit within his available energy points, m (but whatever moves he selects are
applied given the order of moves given).

If the Slayer's hit points are reduced to zero, the Slayer can no longer defeat the Monster. The
Slayer must select a number moves so that he can defeat the monster, given his maximum energy
availability. Your job is to determine if defeating the Monster is possible.

The Problem:

Given the properties of the Slayer and the Monster, and the list of moves that the Slayer has,
determine if the Slayer can defeat the Monster. The Slayer defeats the Monster by reducing its
hit points to zero or less. If the Monster reduces the Slayer's hit points zero or less first, then the
Slayer cannot defeat the Monster.

The Input:

The first line will contain a single, positive integer, t, representing the number of scenarios. Each
scenario will begin with five integers on a line, q, n, m, p, and a, (1 ≤ q ≤ 100; 1 ≤ n ≤ 100;
1 ≤ m ≤ 100; 1 ≤ p ≤ 100; 1 ≤ a ≤ 100), representing the Slayer's health, number of moves,
energy points, and the Monster's health and attack power, respectively. Then, n lines follow,
each with three integers, x (1 ≤ x ≤ 3), y (1 ≤ y ≤ 100) and z (1 ≤ z ≤ 100), representing each
move the Slayer has at his disposal, respectively.

 19

The Output:

For each scenario, output “Fight #i:” where i is the number of the scenario in the input
(starting with 1) followed by a single space and the appropriate outcome, either “Win” or
“Lose” depending on whether or not the Slayer can defeat the monster.

Sample Input:

3
10 5 8 20 5
1 6 4
1 3 1
2 8 1
3 5 5
1 14 4
10 5 10 20 16
3 25 100
2 4 1
2 6 10
2 8 12
2 5 1
32 3 2 3 32
3 2 1
3 2 2
1 32 2

Sample Output:

Fight #1: Win
Fight #2: Lose
Fight #3: Lose

