
University of Central Florida

 2020 Local
Programming

Contest
(Round 1B)

Problems

Problem# Difficulty Level Filename Problem Name

1

2

3

4

5

6

7

8

9

Easy

Easy

Easy-Medium

Easy-Medium

Medium

Medium

Medium-Hard

Medium-Hard

Medium-Hard

birth

digit

box

autojudge

drink

hidden

maketeam

decoder

dj

Sharing Birthdays

Digit Count

Tetrooj Box

Judging Assistant for Contest

Thirsty Professors

Hidden Message

Make the Team

Decoder Ring

Wedding DJ

Call your program file: filename.c, filename.cpp, filename.java, or filename.py

For example, if you are solving Sharing Birthdays:

 Call your program file: birth.c, birth.cpp, birth.java, or birth.py

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Sharing Birthdays
filename: birth

Difficulty Level: Easy

Time Limit: 5 seconds

In a room of 23 people, there is a 50-50 chance of at least two people having the same birthday; in
a room of 75, there is a 99.9% chance of at least two people having the same birthday.

The Problem:

Given a set of birthdays (each in the form of mm/dd), determine how many different birthdays
there are, i.e., duplicates should count as one.

The Input:

The first input line contains an integer, n (1 ≤ n ≤ 50), indicating the number of birthdays. Each
of the next n input lines contains a birthday in the form of mm/dd. Assume mm will be between
01 and 12 (inclusive) and dd will be between 01 and 31 (inclusive). Also assume that these values
will be valid, e.g., there will not be 02/31 in the input. (Consider 02/28 and 02/29 as different days
even though people born on 02/29 usually celebrate their birthdays on 02/28.)

The Output:

Print how many different birthdays there are.

Sample Input Sample Output

3

07/09

10/14

07/09

2

7

10/20

11/22

10/20

10/22

11/20

10/20

11/22

4

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Digit Count
filename: digit

Difficulty Level: Easy

Time Limit: 5 seconds

There are many ways to count the frequencies of letters but can they be applied to digits?

The Problem:

Given a range (in the form of two integers) and a digit (0-9), you are to count how many
occurrences of the digit there are in the given range.

The Input:

There is only one input line; it provides the range and the digit. Each integer for the range will be
between 1000 and 9999 (inclusive) and the digit will be between 0 and 9 (inclusive). Assume the
first integer for the range is not greater than the second integer for the range.

The Output:

Print the number of occurrences of the digit in the given range.

Sample Input Sample Output

1000 1000 0

3

1000 1001 0 5

8996 9004 5

0

9800 9900 5

20

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Tetrooj Box
filename: box

Difficulty Level: Easy-Medium

Time Limit: 5 seconds

Dr. Orooji’s children have played Tetris but are not willing to help Dr. O with a related problem.
Dr. O’s children don’t realize that Dr. O is lucky to have access to 100+ great problem solvers and
great programmers today!

The Problem:

Dr. O knows the length of the base for a 2D box and wants to figure out the needed height for the
box. Dr. O will drop some 2D blocks (rectangles) on the base. A block will go down until it lands
on the base or is stopped by an already-dropped block (i.e., it lands on that block). After all the
blocks have been dropped, we can determine the needed height for the box – the tallest column is
the needed height (please see pictures on the next page corresponding to Sample Input/Output).

The Input:

The first input line contains two integers: b (1 ≤ b ≤ 100), indicating the length of the base and r
(1 ≤ r ≤ 50), indicating the number of blocks (rectangular pieces) to be dropped. Each of the next
r input lines contains three integers: a block’s horizontal length h (1 ≤ h ≤ 100), the block’s vertical
length v (1 ≤ v ≤ 100), and c (c ≥ 1), the leftmost column the block is dropped into. Assume that
the h and c values will be such that the block will not go beyond the box base, i.e., (c + h – 1) ≤ b.

The Output:

Print the needed height for the box (the tallest column is the height).

Sample Input Sample Output

10 4

2 3 1

4 2 2

1 7 6

1 3 4

8

10 3

3 4 8

8 2 1

1 1 3

7

Page | 2

First Sample Input/Output:

Second Sample Input/Output:

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Judging Assistant for Contest
filename: autojudge

Difficulty Level: Easy-Medium

Time Limit: 5 seconds

When people try competitive programming for the first time, it can be challenging for some to
write code according to the constraints of the contest, even if they are already good coders! Of
course, the best way to learn is by doing, and that is why many contests have a “practice” or warm-
up session, which includes testing out the full process of submitting code and getting responses
from the judges. Still, there are always some people who do not attend that session and then make
time-wasting mistakes in the real contest, where it counts! For example, they print out prompts
for inputs, or forget to return zero from their C program. This happens often enough that the judges
need some programs to help them evaluate the submissions.

The Problem:

Given information about a programming contest problem and a submission for that problem, help
the judges determine the best response.

The Input:

The first input line contains the designated “filename” for the contest problem which is a string of
1 to 20 lowercase letters. Recall that this filename does not include the extension (.c, .cpp, .java,
.py).

The second input line contains the name of the submitted file, a string of 1 to 70 characters. This
filename may include an extension, though the contestant might have used an invalid extension
(e.g., .html, .pl, .rb, .asp, …). Note that this file name consists of characters and not just letters,
e.g., the file name may be “C:\My Documents\graph.py”.

The third input line contains three single-space-separated integers: r (0 ≤ r ≤ 10), indicating the
return code of the submitted program, d (1 ≤ d ≤ 10), indicating the time limit in seconds allowed
for a correct program to run, and e (0 ≤ e ≤ 20), indicating the elapsed time in seconds while the
program was running. (Note that, in a real contest, it may not be possible to run a submitted
program but that aspect is not included in this problem to simplify the problem.)

The fourth input line contains an integer, c (1 ≤ c ≤ 10), indicating the number of output lines
produced by a correct program. The following c input lines provide the correct output; each line
will contain zero to 70 characters and the first and last line(s) will contain at least one non-blank
character.

The next input line contains an integer, t (0 ≤ t ≤ 10), indicating the number of output lines
produced by the submitted program. The following t input lines provide the output produced by
the submitted program; each line will contain zero to 70 characters. Note that, unlike the correct

Page | 2

output, it is not guaranteed that the first and last line(s) of the submitted output will contain at least
one non-blank character, i.e., the submitted output could be all blanks. Note also that, in a real
contest, a submitted program may have far more output lines than expected and some output lines
may far exceed the expected length but those aspects are not included in this problem to simplify
the problem.

The Output:

If the submitted file name does not match (case-sensitively) the designated problem filename, or
if it doesn’t have one of the valid extensions (.c, .cpp, .java, or .py), print the message
“Compile Error”. Otherwise, if the return code of the program is not zero, print “Run-
Time Error”. Otherwise, if the elapsed time for the submitted program exceeds the time limit,
print “Time Limit Exceeded”. Otherwise, if the submitted program output does not match
the correct output (line by line and character by character), print “Wrong Answer”. Otherwise,
print “Correct”.

Sample Input Sample Output

(more Sample Input/Output on the next page)

triangle

MyTriangle.py

0 3 0

1

scalene

0

Compile Error

graph

graph.py

5 3 3

1

done

1

done

Run-Time Error

dust

dust.c

0 10 11

3

12cm of dust

3cm of dust

Impossible

1

Please enter shelf size:

Time Limit Exceeded

Page | 3

Sample Input Sample Output

awesome

awesome.java

0 5 5

1

Result = 100

2

Result =

100

Wrong Answer

awesome

awesome.java

0 5 5

2

Result =

100

2

RESULT =

100

Wrong Answer

awesome

awesome.java

0 5 5

1

Everything is awesome!

1

Everything is awesome!

Correct

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Thirsty Professors
filename: drink

Difficulty Level: Medium

Time Limit: 3 seconds

Dr. Orooji and Dr. Meade were lost in a desert and they were extremely thirsty. They each had a
stick so they decided that they can form a shape (e.g., “V” shape, “X” shape, etc.) facing the skies
and, when it rains, water would collect in the top part of the shape and then they can drink it; please
see the picture on the next page.

Making the shape would be easier if one person holds both sticks but neither professor was willing
to give up his stick. So, they tried to form the shape together, each holding one stick. And, we
know how coordinated the professors can be!

The Problem:

Given two line segments, the first line with positive slope and the second line with negative slope,
compute the area for water collection. When checking for intersecting (touching), if two points
are within 10-6 of each other, consider the points the same.

The Input:

There are two input lines, each describing a line segment. The first input line contains four integers
(0 < x1, y1, x2, y2 < 1,000; x2 > x1 and y2 > y1), describing the first stick. The second input line
contains four integers (0 < x3, y3, x4, y4 < 1,000; x4 < x3 and y4 > y3), describing the second stick.
Note that neither line segment will be parallel to x-axis or parallel to y-axis.

The Output:

Print the area for water collection. Your output may have any number of digits after the decimal
point; answers within 10-5 absolute or relative of the judge output will be considered correct.

Note that, as illustrated in the second Sample Input/Output, if the two line segments do not
intersect, it will not be possible for the water to collect and, as such, the output will be zero.

Page | 2

Sample Input Sample Output

5 2 9 6

5 2 3 4

4.0

11 14 18 15

13 18 10 20

0.0

5 2 9 6

12 1 6 10

0.03333

 water

Stick_1

Stick_2

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Hidden Message
filename: hidden

Difficulty Level: Medium

Time Limit: 2 seconds

John was reading the local newspaper, and noticed that the phrase “chime a cork teen” could be
split into three sub-phrases “eat”, “more”, and “chicken”. Note that the three sub-phrases
combined contain exactly the same letters as the original phrase and the letters in each sub-phrase
appear in the same order as they appear in the original phrase. Note also that the number of
occurrences of each letter in the three sub-phrases combined is the same as that of the original
phrase.

John began to theorize that the newspapers were sending him messages, but you decide to show
him that a message like that was not abnormal. You want to determine the number of ways a
phrase can be broken down into three words that John finds.

The Problem:

Given three sub-phrases and the original phrase, determine the number of ways the sub-phrases
can be formed from the original phrase. The number of ways can be quite large, so determine the
number modulo 1,000,000,007.

The Input:

The input consists of four lines. Each of the first three input lines contains 1-100 lowercase letters,
representing a sub-phrase. The fourth input line contains 3-300 lowercase letters, representing the
original phrase. Note that the sum of the lengths of the three sub-phrases is equal to the length of
the original phrase.

The Output:

Print a single integer representing the number of ways to partition the original phrase into three
groups where each group is one of the three sub-phrases. Print the count modulo 1,000,000,007.

Page | 2

Sample Input Sample Output

eat

more

chicken

chimeacorkteen

2

the

great

depression

depressigortheneat

2

a

a

a

aaa

6

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Make the Team
filename: maketeam

Difficulty Level: Medium-Hard

Time Limit: 5 seconds

You are eager to make the programming team. You have decided that if you watch several videos,
you will increase your chances of making the team. Each video you want to watch is one hour
long, and each video plays at specific times. Naturally, you want to get through all the videos as
fast as possible, to leave more time to practice!

For example, if you want to watch two videos and the first one is available at the time intervals
[1,2), [4,5), [8,9) and [12,13), and the second video is available at the time intervals [4,5), [7,8),
and [11,12), then the earliest time at which you can complete the two videos is time 5. You can
accomplish this by watching the first video in the time interval [1,2) and the second one at the time
interval [4,5). Note that all videos play for precisely the length of one time interval, and one can
watch back to back videos. Thus, if one video plays at the interval [x, x+1) and another video
plays at the interval [x+1, x+2), where x is a positive integer, both can be watched, back to back.

The Problem:

Given a list of times that each video you want to watch is available, determine the earliest time at
which you can complete watching all of the videos. Note that the videos can be watched in any
order as long as the time intervals allow.

The Input:

The first input line contains a single integer, n (1 ≤ n ≤ 200), indicating the number of videos you
would like to watch. Each of the next n input lines describes a video you want to watch. The ith
of these input lines starts with an integer, ti (1 ≤ ti ≤ 30), representing the number of times video i
is available to watch. This is followed by ti space separated values indicating the starting time
video i is available to watch. The list of times for each video will be a strictly increasing list of
positive integers, with a maximum value of 1000. It is guaranteed that there will be at least one
arrangement that allows you to watch all of the videos.

The Output:

Print the earliest time at which you can complete watching all of the videos.

Page | 2

Sample Input Sample Output

3

2 4 6

3 4 9 11

1 4

10

4

2 3 11

3 2 9 11

2 2 3

2 3 9

12

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Decoder Ring
filename: decoder

Difficulty Level: Medium-Hard

Time Limit: 5 seconds

Cereal Companies usually include toys in their boxes to attract kids to their products. One of the
toys in the 1990’s was as follows: the toy had a piece of paper showing a long string of letters (we
will refer to this string as the ciphertext). The toy also had a list of positive integers, which we
will refer to as the key. The first integer of the key was the distance from the beginning of the
ciphertext to get you to the first letter of a plaintext message, i.e., the first integer would provide
how far to advance in the ciphertext to arrive at the first letter of the plaintext message. The second
integer of the key was the distance from the first letter in the ciphertext to get you to the second
letter of the plaintext message. The third integer of the key was the distance from the second letter
in the ciphertext to get you to the third letter in the plaintext message, and so on. Taking the steps
provided in the key would reveal the plaintext message. The sum of the integers in the key would
not, of course, exceed the length of the ciphertext. For example, if the ciphertext was
“abcdoefgholijk” and the key was {3,2,5,1}, the plaintext message would be “cool”.

But, the kids today have access to several computing devices so the above problem would be
solved in one millisecond by the kids! The Unlimited Cereal Factory has modified the above toy.
The new version provides a string and an integer K; the ciphertext is created by repeating
(concatenating) the given string K times. The key is not provided either; rather the plaintext
message is provided and the challenge is to determine how many different keys could be selected
to extract the plaintext message from the ciphertext. Again, the sum of integers cannot exceed the
length of the ciphertext.

Let’s use the first Sample Input/Output to explain the problem further. The ciphertext is “abcde”
repeated 4 times so the ciphertext is “abcdeabcdeabcdeabcde”, and the plaintext message is
“abc”. The plaintext message can be extracted from the ciphertext with 20 different keys, each
key (list of integers) providing the distances. Some of the 20 possible keys that can be used to
extract the plaintext “abc” from the ciphertext are {1, 1, 1}, {1, 1, 6}, {1, 1, 11},
{1, 1, 16}, and {1, 6, 1}.

The Problem:

Given a ciphertext formed by a string repeated a constant number of times, and a desired plaintext
message, determine the number of ways you can create the plaintext message represented by
positive offsets on the ciphertext. Since the number of ways can be quite large, output the answer
modulo 1,000,000,007.

Page | 2

The Input:

The first input line contains a string (1 ≤ length ≤ 100), starting in column 1 and consisting of only
lowercase letters. The second input line contains an integer, k (1 ≤ k ≤ 1018), representing the
number of times the string is repeated to derive the ciphertext. The third input line contains the
plaintext message (1 ≤ length ≤ 50), starting in column 1 and consisting of only lowercase letters.

The Output:

Print a single integer, representing the number of ways to form the plaintext message from the
ciphertext. Again, the sum of the integers in the list cannot, of course, exceed the length of the
ciphertext.

Sample Input Sample Output

abcde

4

abc

20

taco

25

tacocat

1184040

Page | 1

UCF Local Contest (Round 1B) — September 12, 2020

Wedding DJ
filename: dj

Difficulty Level: Medium-Hard

Time Limit: 3 seconds

You have always wanted to be a DJ and finally got your first opportunity! You have a list of songs
that you will play at a wedding in the order the songs appear in the list. Each song has a “fun level”
but the problem is that B&G (the bride and the groom) do not want any song to be played after a
song with a lower fun level, i.e., B&G consider the wedding playlist good only if the fun level of
the songs do not ever decrease. Fortunately, you can adjust the fun level of songs. You can choose
to change all songs with fun level x to fun level y, e.g., you can choose to change all songs with
fun level 10 to fun level 7 (or to fun level 18). Note that:

- When you choose to change all songs with fun level x to fun level y, even though all the
songs with fun level x are changed, this is considered as one change.

- When you choose to change all songs with fun level x, all the songs with fun level x change
and not a selected subset of the songs with fun level x.

- If you change all songs with fun level x to fun level y and then you decide to change all the
songs with fun level y to fun level z, the second change applies to the updated list and not
the original list. For example, if the original list is {… 3 … 8 … 3 … 8 … 3 …} and you
decide to change fun level 3 to 8 and then decide to change fun level 8 to 2, five songs
change their fun level to 2 and not two songs.

The Problem:

Given the order of the fun level of a list of songs, determine the minimum number of playlist
adjustments in the form of transforming all songs of level x into level y, such that the fun level of
the songs of the playlist is non-decreasing.

The Input:

The first input line contains an integer, n (1 ≤ n ≤ 100,000), representing the number of songs in
the playlist. The following input line contains n space separated integers, representing the fun
level for the songs in the order they appear in the playlist; each fun level is between 1 and
1,000,000,000 (inclusive).

The Output:

Print the minimum number of adjustments to make the playlist’s fun level non-decreasing.

Page | 2

Sample Input Sample Output

10

1 7 1 7 8 5 8 3 8 8

3

6

1 6 3 4 2 1

4

Explanation of the first Sample Input/Output:

One way to make the list non-decreasing is:

- Change all 7’s to 1
- Change all 8’s to 3
- Change all 5’s to 3

for a total of 3 changes.

