University of Central Florida

2019 (Fall)
Local

Programming

Contest

Problems
Problem# | Difficulty Level | Filename Problem Name
1 Easy divide Divide the Cash
2 Easy freq Sort by Frequency
3 Easy-Medium bed Fitting on the Bed
4 Easy-Medium candy Candy Land
5 Medium gnocchi Give-a-Gnocchi
6 Medium moress More or Less
7 Medium-Hard escape Cooperative Escape
8 Medium-Hard view Mountain View
9 Medium-Hard unround Floating-Point Unrounding
10 Hard will Programming Team’s Will
11 Hard match Code Matching

Call your program file: filename.c, filename.cpp, filename.java, or filename.py

For example, if you are solving Sort by Frequency:

Call your program file: freq.c, freq.cpp, freq.java, or freq.py

UCF Local Contest — September 7, 2019
Divide the Cash

filename: divide
Difficulty Level: Easy

The UCF Programming Team coaches schedule practices regularly in fall and spring (by the
way, all UCF students are welcome to the practices). During summer, the majority of the team
members are gone but the coaches know how to make sure the students don’t get “rusty”. The
coaches usually give prize money and reward the team members based on how many problems
they solve during summer. For example, let’s assume the coaches have $1,000 in prize money
and there are three students. Let’s also assume the three students solve, respectively, 5, 8 and 7
problems, i.e., a total of 20 problems. So, the reward for one problem will be $50 ($1000/20)
and the three team members will receive, respectively, $250, $400 and $350.

The Problem:

Given the total prize money and the number of problems each team member has solved, compute
the reward for each student.

The Input:

The first input line contains two integers: n (1 < n < 30), indicating the number of team members
and d (1 <d <30,000), indicating the dollar amount to be divided among the students. Each of
the next » input lines contains an integer (between 1 and 300, inclusive) indicating the number of
problems a team member has solved. Assume that the input values are such that the reward for
one problem will be an integer number of dollars.

The Output:

Print the pay, in dollars, for each team member (in the same order as they appear in the input).

Sample Input Sample Output
3 1000 250

5 400

8 350

5

1 500 500

10

Page | 1

UCF Local Contest — September 7, 2019
Sort by Frequency

filename: freq
Difficulty Level: Easy

We all have heard the expression “more is better” so, in this problem, we are going to give higher
precedence to the letter occurring the most.

The Problem:

Given a string containing only lowercase letters, you are to sort the letters in the string such that
the letter occurring the most appears first, then the letter occurring the second most, etc. If two or
more letters occur the same number of times, they should appear in alphabetical order in the output.

The Input:

The input consists of a single string, appearing on a line by itself, starting in column 1 and not
exceeding column 70. The input will contain only lowercase letters (at least one letter).

The Output:

Print the sorted version of the input string, all on one line with no spaces.

Sample Input Sample Output
dcbbdabb bbbbddac
programming ggmmrrainop

Page | 2

UCF Local Contest — September 7, 2019
Fitting on the Bed

filename: bed
Difficulty Level: Easy-Medium

Arup’s daughter, Anya, doesn’t like sleeping in a bed in the usual way. In particular, she is willing
to put her head anywhere, and furthermore, she’s willing to lie in any direction. For the purposes
of this problem, Anya, who is quite skinny, as she’s only at the fifth percentile in weight, will be
modeled as a line segment with her head being one of the end points of the segment. The bed will
be modeled as a rectangle with the bottom left corner with coordinates (0, 0), the top left corner
with coordinates (0, L), where L is the length of the bed, and the top right corner with coordinates
(W, L), where W is the width of the bed. In the left diagram below, Anya’s head is near the top
left corner and she’s sleeping completely sideways, off the bed - this corresponds to the first sample
case. In the right diagram below, her head starts at a point a bit below where it starts in the first
diagram, but she’s sleeping at a diagonal, which allows her to fit on the bed!

(o,L) (W,L)

@

(0,0) (W,0)
The Problem:

Given the size of the bed, the location of Anya’s head, her height, and the angle in which her body
is in relation to her head (here we use 0 degrees to indicate that her body is going straight to the
right of her head and 90 degrees to indicate that her body is going above her head), determine if
Anya is fully fitting within the bed or not. (Note: a normal sleeping position would be having your
head near (W/2, L) with your body in the direction of 270 degrees.)

The Input:
The first line of input contains three positive integers: L (L < 500), the length of the bed in
centimeters, W (W < 500), the width of the bed in centimeters, and H (H < 200), Anya’s height in

centimeters. The second line of input contains three non-negative integers: x (x <), the number
of centimeters from the left side of the bed Anya’s head is, y (y < L), the number of centimeters

Page | 3

from the bottom of the bed Anya’s head is, and a (a < 359), the angle in degrees Anya’s body is
facing in relation to her head.

The Output:

On a line by itself, output “YES” (no quotes) if Anya completely fits on the bed, or “NO”,
otherwise. Note: for all cases where Anya doesn’t fit on the bed, at least 1% of her body will be
off the bed. She’s considered on the bed if part or all of her touches edges of the bed but none of
her body extends off the bed.

Sample Input Sample Output
200 150 115 NO

40 190 O

200 150 115 YES

40 150 315

Sample Explanation: In the first sample case, Anya’s head is near the top of the bed 40
centimeters from the left end of the bed, but her body is veering completely to the right. Since
there is only 110 cm to the right and Anya is 115 cm tall, 5 cm of her is off the bed. In the second
sample case, Anya’s head is 40 cm below where her head was for the first sample case, but she’s
sleeping in a diagonal in the direction of where the hour hand of a clock would be at 4:30. In this
configuration, she has enough room to fit on the bed, since she can go up to 110 cm to the right
and 150 cm down.

Page | 4

UCF Local Contest — September 7, 2019
Candy Land

filename: candy
Difficulty Level: Easy-Medium

A popular board game among young children is Candy Land. The game board has several squares
in a row and each square is either a color or a special square. Several players can play and on a
player’s turn, she turns over a card from the top of a deck, which is face down. Each of these cards
will have either a square with a color, two squares with the same color, or a picture of a special
square. If the card has a square with a color, the player advances (from their current location) to
the next square on the board with that color. If the card has two squares with the same color, the
player advances to the second square on the board with that color past their current location.
Finally, if the card has a special square pictured, the player moves directly to that special square
(this move could move the player ahead or behind where they currently are; assume all special
squares are unique, i.e., there is exactly one occurrence of each special square on the board). Note
that it is possible for multiple players to be in the same square at the same time.

The last square of the board is multicolored (all colors) and whoever reaches that square first wins.
Also, if a player pulls a card with two squares with the same color, but only the multicolored square
at the end has that color on it, the player wins.

Since young children don’t know how to shuffle cards, when they play the game, the cards are
initially set in a particular order. After a player picks up a card and follows its move, she places
that card, face down, at the bottom of the deck. Due to the lack of shuffling, what the children
playing don’t realize is that the game is 100% deterministic!

The Problem:

Given the layout of all the squares on a version of Candy Land, the number of players in the game,
and the order of the cards in the deck, determine which player will win the game.

The Input:

The first line of input contains two positive integers: n (2 < n < 200), the number of squares on the
Candy Land board and p (2 < p < 6), the number of players in the game. The following n-1 lines
of input will each contain a single string of uppercase letters, indicating the contents of each square
on the board, in order, except the last square. The last square is all colors and indicates where a
player lands if there are no further squares of that color to land on. Note that players start directly
prior to the first square of the board. Each of these strings will contain at most 20 uppercase letters.
Each special square will start with the prefix “SPECIAL” followed by at least one uppercase letter
(assume none of the colors will contain the substring “SPECIAL”).

The input line following the board definition will contain a single positive integer, ¢ (¢ < 500),
representing the number of cards in the deck for the game. The following c lines of input contain

the contents of the deck, one card per line, with the top card of the deck first. Each card is described

Page | 5

with a number (1, 2 or 3) followed by a space followed by a string of uppercase letters. The
number 1 indicates a card with a single square. The number 2 indicates a card with two squares.
Both of these types of cards are followed by a string guaranteed to be a color that appears on the
board. The number 3 indicates a special square. This is followed by a string guaranteed to be a
valid special square on the board.

The Output:
On a line by itself, output the 1-based number of the player who wins the game. Note: it is
guaranteed that the input game finishes in fewer than 10,000 turns, though it’s possible that if play

were infinitely extended, some of the players would never finish.

Sample Input Sample Output

10 2 2
RED

BLUE
SPECIALCANE
GREEN

RED

BLUE

BLUE

GREEN

RED

RED

BLUE
SPECIALCANE
GREEN

N W NP

35 1
RED
SPECIALLOLLIPOP

2

3 SPECIALLOLLIPOP
1 RED

Sample Explanation: In the first sample game, the first player moves to the first square, a red
square. Then, the second player moves to the second blue square, which is square number 6. Then,
the first player moves to the cane square, which is square number 3. Finally, the second player
gets to move 2 green squares forward. Since there is only one green square (#8) in front of player
2, she wins the game by getting to square number 10. Had there been another turn in the game,
the first player would have gotten the card with 1 red square. In the second sample game, player
#1 wins on her second turn. She pulls the special card followed by the red card.

Page | 6

UCF Local Contest — September 7, 2019

Give-a-Gnocchi

filename: gnocchi
Difficulty Level: Medium

Your favorite Italian restaurant is having a promotion. The restaurant is giving away “free”
gnocchi soups. The only cost is to provide them with a prime number. But the restaurant does not
want to go out of business; they will only accept a prime number if it is not already in their
database. Once a prime number is accepted, they add it to their database. As it turns out, every
time you have tried to give them a prime number, no matter how large, they already have it in their
database, so you end up having to pay for your meal.

Your friend, Euler, noticed something odd about the verification program. Euler gave the
restaurant the number 24,990,001, and they accepted it. Euler realized this value was not prime
after he checked it at home, so he did some analysis to determine what happened. It turns out the
restaurant’s database accepts any number (even a composite number!) that is not divisible by a
prime lower than or equal to some value n; which means you can easily get your gnocchi soup
(albeit a little dishonestly) by finding a number (even a composite) the restaurant will accept.
Basically, on the first day, you could give the first composite number that is not divisible by a
prime lower than or equal to n; on the second day, you would give the next composite number that
is not divisible by a prime lower than or equal to n, etc.

The Problem:

Since the restaurant keeps track of the numbers given to them, it is difficult to find what number
to give to the restaurant next. Your other friend, Fermat, suggests that you write a program that
will take in a value n and a day k, and it will output the £ (1-indexed) composite number that is
not divisible by a prime less than n.

The Input:

The input consists of a single line providing two positive integers: n (n < 1000), representing the
highest possible value for checking for primality, and &k (£ < 1000), indicating the index of the
desired composite number.

The Output:

Print the k™ (1-indexed) composite number satisfying the given constraints.

Page | 7

Sample Input Sample Output

10 3 169
11 4
19 7 943

Sample Explanation:

In the first sample case, the smallest composite numbers not divisible by a value less than or equal
to 10 are 121, 132, 169, 189, 221. On the first day we could give 121. The second day we would
use 132. On the third day (when k = 3) we would use 169.

For the second sample case, the answer is 4, since it is both the 1% composite number and the first
number not divisible by any prime less than or equal to 1.

For the last case, the smallest composite numbers not divisible by a prime less than or equal to 19
include 529, 667, 713, 841, 851, 899, 943, 961, and 989. The 7" value in the list is 943, which
will be the value given on the 7™ day.

Page | 8

UCF Local Contest — September 7, 2019

More or Less

filename: moress
Difficulty Level: Medium

You thought it would never happen, the Sudoku craze is finally over! People are overwhelmingly
bored of Sudoku puzzles. To take advantage of their fatigue, you’ve decided to make up a new
puzzle, called “More or Less!”, so that you can become rich! Naturally, so that the old Sudoku
solvers won’t be lost, your rules must be of a similar format to Sudoku, but nonetheless be
different. You’ve decided on an # x n board, where all valid solutions must have each integer 1
through n, inclusive, appear on each row and each column. There is no box or diagonal rules.
Naturally, some numbers out of the n” squares are given and the puzzle is to fill the rest out. In
addition to some numbers being given, some less than and greater than signs are placed between
pairs of adjacent squares. Consider the puzzle shown below:

3

\" Vv

2>

In this puzzle, we are given that the entry in the last row and column is less than the entry in row
5, column 4, which is 2. Since we must use the integers 1 through 5 only, it follows that the entry
in the last row and column must be 1. Similarly in this puzzle, we see that the entry in row 4,
column 4 must be greater than 2 and the entry in row 3 column 4 has to be bigger than the entry in
row 4, column 4.

In order for you to be able to mass market this puzzle, you have to write a program that
automatically solves arbitrary puzzles, since you don’t have time to do such nonsense by hand.

! This type of puzzle already exists. It also goes by the name “Futoshiki”.
Page | 9

The Problem:

Given a More or Less puzzle which has precisely one unique solution, determine the correct values
that must go in each of the blank squares.

The Input:

The first line of input contains a positive integer, n (n < 7), representing the number of rows and
columns in the More or Less puzzle. The puzzle will follow on the next 2n-1 lines. The odd line
numbers (1, 3, ...) will contain the rows of the puzzle while the even lines will contain information
about relationships between vertically oriented adjacent cells. On each of the odd lines, the odd
numbered characters will represent the contents of each box of the puzzle, with empty squares
represented with a ‘-’ (hyphen character) and filled in numbers with the appropriate digits in
between 1 and #n, inclusive. On each of the odd lines, the even numbered characters will either be
‘.’ (period), >’ (greater than) or ‘<’ (less than). A period denotes no relationship between the two
squares it is in between while the inequality signs denote their natural relationship.

On the even numbered lines, the odd numbered columns will either contain ‘.” (period), ‘v’
(lowercase v) or ‘“*’ (caret symbol). A period denotes no relationship between the two squares it
is in between while the ‘v’ denotes that the value in the square above it is greater than the value in
the square below it and the “*’ denotes that the value in the square above it is less than the value
in the square below it. All of the even column characters on the even numbered rows will contain
‘.’ only.

It is guaranteed that each puzzle will have a unique solution, which means that all of the
information on the given input board will be consistent with itself, and there will be exactly one
completed grid that will satisfy all of the given constraints.

The Output:

Output n rows of exactly n digits representing the solution to the puzzle. Do not output spaces or
any other characters.

Page | 10

Sample Input Sample Output

5 23415
-.3.-.-.- 12354
......... 51243
. m 45132
......... 34521
- = 2.

Veeoon v

-.5.-.-.-

Veeuouo v

4123
- 3241
R 2314
- =>- 1432
< - -
v.h ...
-.—.=.2

Page | 10

UCF Local Contest — September 7, 2019

Cooperative Escape

filename: escape
Difficulty Level: Medium-Hard

Bonnie and Clyde have noticed that parallel processing improves throughput so, instead of robbing
one bank together, they’ve decided to rob two different banks simultaneously (each robbing one).
They both succeeded and now they need to run to their get-away 1934 Ford Model (730 Deluxe
Sedan). There are complications, of course, or the movie won’t be exciting!

The Problem:

The city is in the shape of a matrix with cells. Bonnie and Clyde are in two different cells, and the
get-away car is in a different cell as well. Bonnie and Clyde can move in four directions: north,
south, east, and west (the border cells of course have fewer move options since they cannot move
across the outer walls of the city). Some cells are also blocked, i.e., neither one can move into it.
To put more adventure in the movie, it is also the case that once Bonnie or Clyde moves into a
cell, then neither one can move into that cell anymore, i.e., a cell is used at most once. Bonnie and
Clyde cannot move into each other’s starting position either.

Given the city map (in the form of a matrix), the location for Bonnie, Clyde, and car, you are to
compute the minimum total number of moves needed for both Bonnie and Clyde to get to the car,
i.e., the total number of moves made by Bonnie plus the total number of moves made by Clyde.

The Input:

The first input line contains two integers, 7 and ¢ (2 <r, ¢ < 30), providing the number of rows and
columns for the matrix. Each of the next r lines contains ¢ characters, starting in column 1; this is
the input matrix. There will be exactly one “B” (Bonnie’s starting location), one “C” (Clyde’s
starting location), and one “F” (where the get-away Ford car is) in the input maze. The remaining

(134

cells will be “.” (empty cell — one can move into) or “x” (blocked — one cannot move into).
The Output:

Print the minimum total number of moves needed for both Bonnie and Clyde to get to the car. If
they cannot get to the car, print -1. Note that when one reaches the car, he/she stops moving.

Page | 12

Sample Input

Sample Output

9

14

Sample Explanation: In the first sample case, Bonnie can reach the car with 4 moves and Clyde

can reach the car with 5 moves, for a total of 9 moves.

Page | 13

UCF Local Contest — September 7, 2019

Mountain View

filename: view
Difficulty Level: Medium-Hard

You have spent the summer in Mountain View and want to share with your friends the beautiful
view. The mountains are far away enough that we can model them as lined up on a straight line
on the positive x-axis. When you take a picture of the mountains, your camera captures a fixed
width, W, of the mountain view, capturing the mountain outline in the range [x, x+W].

If we assign the elevation of a point to be its y-value, then we can describe the mountain outline
as a series of ordered pairs, from left to right, where the mountain line between ordered pairs is the
straight line between the two points. Consider the mountain outline defined by the points (0, 10),
(20, 20), (30, 5), and (60, 30):

| (60, 30)

(0,10) ’/-*” \

I X axis

Plcture of width W = 20

If your camera width was W = 20, then one possible picture you could take is the one shown above
in between the range of x = 15 and x = 35. Since you want to show your friends a mountainous
view, you would like to show them a picture where the average height of the mountain is maximal
of all possible pictures you could take with a fixed width of W. For the example above, the best
choice would be the picture from x =40 to x = 60. For this picture, the average elevation of the
mountain line is y = 65/3.

The Problem:

Given the description of a mountain line and a fixed width W for your picture, determine, of all
possible pictures you could take, the maximum average elevation.

The Input:

The first line of input contains two positive integers: n (2 < n < 10°), the number of points
describing the mountain line, and W (1 < W < 10%), the width of the picture your camera takes.
The i (1 <i<n) line of the following input lines contains two non-negative integers, x; (x; < 10°)
and y; (y: < 10%), the x and y coordinates, respectively, of the i point describing the skyline. It is
guaranteed for all i < n that x; < x;+1. Assume that outside of the mountain landscape given in the
input, the elevation is always 0.

Page | 14

The Output:
On a line by itself, output the maximum average height of all possible pictures you could take.
Print 9 digits after the decimal point. Answers will be judged correct if they are within an absolute

or relative tolerance of 107,

Sample Input Sample Output

4 20 21.666666667
0 10
20 20
30 5
60 30

31 50.000000000
10 50
90 50
1000 49

Page | 15

UCF Local Contest — September 7, 2019

Floating-Point Unrounding

filename: unround
Difficulty Level: Medium-Hard

Juliana would like to extrapolate, as accurately as possible, a geometric sequence with terms that
have all been rounded to D significant digits.

A geometric sequence is an ordered sequence of real numbers of the form ao, a1, a2, as, ... an1,
where the terms (i.e., the numbers in the sequence) are related by powers of a constant factor 7,
specifically, a1 = aor, ax=ao?, az=aor’, ..., and an.1=aor™V. Generally, for the i" term,
ai = aor’, so if you know accurate values for ap and r, you can find any term. For example, if a is
exactly 180 and r is exactly 1.95, the first 4 terms (that is, » = 4) of the geometric sequence are
180, 351, 684.45, and 1334.6775.

Rounding to significant digits is a different method of rounding than the traditional, fixed-
decimal/fixed-precision rounding that you might be used to. Significant digits are the digits of a
number, in standard decimal notation, starting at the leftmost nonzero digit (the one in the largest
place after all leading zeroes, even zeroes after the decimal point) and continuing to the right for
exactly the next D digits, for some specified value of D. At the D™ digit, standard rounding rules
are applied to remove all remaining digits (if after the decimal point) or to convert them to zeroes
(if before the decimal point).

This method, unlike traditional rounding, does not always result in the same fixed number of digits
after the decimal point, and it may result in mandatory trailing zeroes, which indicates that D digits
(including those trailing zeroes) are significant. The decimal point itself is only included when
there are significant digits after it, and a leading zero is shown before the decimal point only when
the first significant digit is after the decimal point.

Here are some examples of numbers rounded to significant digits, according to the rules above,
with different values for D:

Original Rounded to D=3 | Rounded to D=4 | Rounded to D=5

Number significant digits | significant digits | significant digits
13.249999 13.2 13.25 13.250
13.25 13.3 13.25 13.250
987654321 988000000 987700000 987650000
0.01234567 0.0123 0.01235 0.012346
0.5000123 0.500 0.5000 0.50001
180 180 180.0 180.00
351 351 351.0 351.00
684.45 684 684.5 684.45
1334.6775 1330 1335 1334.7

Page | 16

Those last 4 rounding examples are the terms of the preceding example for a geometric sequence.
If you are given a geometric sequence only after the terms have been rounded in this way (such as
180.0, 351.0, 684.5, 1335), you have only an approximation for many or all values, since many
original values could yield the same rounding result. And if you weren't given the value of 7, it
will be difficult to extrapolate the sequence accurately, since rounding errors would accumulate
rapidly. So you first need to find a way to reverse the effect of this kind of rounding—that is, to
“unround” the numbers.

So how would you get from a D = 4 rounded value of 1335 back to exactly 1334.6775? It's not
possible since any value from 1334.5 to 1335.4999... (inclusive), would round to 1335 using D = 4.
But while you might not be able to find the exact original values with complete precision, you
should be able to find, for some larger D value, the minimum and maximum valid values (the
tightest possible upper and lower bounds) that would still satisfy the entire geometric sequence. If
you can find the minimum and maximum valid values for ao and r in this way, it will enable Juliana
to extrapolate the sequence with confidence.

The Problem:

Given the consecutive terms of a geometric sequence, each rounded to the same D significant
digits, find the minimum and maximum valid values for ao (the first given term), each expressed
with D+3 significant digits, and the minimum and maximum valid values for r, each expressed
with D+5 significant digits.

The Input:

The input will consist of two lines. The first line will contain only an integer D (0 < D < 6), and
an integer N (1 <N <200), separated by a single space. The second line will contain the
consecutive terms, a; (10 < a; < 10%), in order for the geometric sequence—exactly N numbers
with D significant digits each. Each term will contain a decimal point, leading zero, and/or trailing
zeroes only as required by the rules above. Each term will be separated from the next by a single
space. The input numbers have been constructed such that the judges' solution requires no more
than 13 significant digits in any intermediate calculation.

The Output:

Output a single line with four numbers in standard decimal notation, each separated by a single
space, in this order: the minimum and maximum valid values for ao, rounded (or “unrounded” in
this case) to D+3 significant digits, and the minimum and maximum valid values for r, similarly
“unrounded” to D+5 significant digits. Follow the rules for significant digits, decimal points,
leading zeroes, and trailing zeroes, exactly as given above.

Page | 17

Sample Input Sample Output

4 4 179.9500 180.0500 1.94973304 1.95041335
180.0 351.0 684.5 1335

36 12.850 12.949 1.0076924 1.0106650

12.9 13.0 13.2 13.3 13.4 13.5

13 250.0 350.0 0.0520988 0.0774597

300 20 1

Page | 18

UCF Local Contest — September 7, 2019

Programming Team’s Will
filename: will
Difficulty Level: Hard

The UCF Programming Team has a not-so-well-known tradition of creating “Last Wills” for the
event that one of the members leaves the team during the year unannounced. If that happens,
something must be done with their lollipop collection in the Programming Team Lab! The
Programming Team lets its members specify to which other UCF students they want to give their
lollipops. Each member writes up a list of UCF students and, for each student, what fraction of
the lollipop collection should be given to them. Note that all team members are UCF students as
well so a team member could have another member in their will.

Normally this is a perfect solution; someone drops out of UCF to switch to some lesser college,
and their lollipops are spread among their specified recipients. However, there has been a horrible
tragedy. Some of the team was enrolled in Dr. Meade’s CS-I class, and just took the first exam.
Everyone who was enrolled has failed out of the class, and is kicked off the team by Dr. Meade!
But what should happen to their lollipop collections now? The issue is that some team members
had each other in their wills, so we cannot simply resolve them one at a time.

To handle this, the team agreed upon a fair strategy to distribute the lollipops. The wills would all
be repeatedly applied (including giving lollipops to departing team members) until the total
lollipops of departing members converged to zero. In the event that infinite applications of
everyone’s wills would still leave some lollipops with departing members, those lollipops would
be thrown away. However, this is potentially a very slow and infinite process, so they need your
help to figure out where the lollipops end up. Note that a fractional part of a lollipop can be given,
if needed, by crushing up the lollipop.

The Problem:

Given a list of departing team members’ wills and their lollipop counts, output how many lollipops
each student at UCF will end up with.

The Input:

The first input line contains two space separated positive integers: N (2 < N < 500) representing
the number of programming team members in Dr. Meade’s class, and M (N < M < 50,000)
representing the total number of UCF students. The programming team members in Dr. Meade’s
class have ID’s 1 through N, and the other students have ID’s N+1 through M. Then follow N
wills, each described as follows:

Each will starts with a line containing two integers: L (1 <L < 1000) representing the number of

lollipops, and K (1 < K < M) the number of entries in this will. The following K lines each contain
an integer X specifying the id of the person in the will, and a floating-point number P (P > 10°)

Page | 19

specifying what portion (fraction) of the lollipop collection goes to person X in this will. Assume
that:

- A single person's will contains only unique people, i.e., there won't be two entries for the

same person in a will.

- The will for a person will not contain themselves.

- The fractions in a team member’s will add up to 1.

- The total number of entries in all wills will not exceed 1,000,000.

- The input values for P will be given with no more than 6 digits after the decimal point.

The Output:
Output M lines, containing the number of lollipops that each student ends up with (in order by ID).

Note that the first N lines should be 0, since all lollipops from those students will either be given
away or thrown away. Your answer will be judged to a precision of 107.

Sample Input Sample Output

25 0.0

100 2 0.0

2 0.9 14.63414634

3 0.1 185.36585366
100 2 0.0

1 0.2

4 0.8

Page | 20

UCF Local Contest — September 7, 2019
Code Matching

filename: match
Difficulty Level: Hard

James is a spy, working in a country where communication back to his headquarters is not easy.
He receives instructions from his superiors over a radio signal, through the use of number stations.
A number station is a radio station where a list of numbers are occasionally read out, that have
some encrypted meaning. James has a codebook with a mapping of number sequences (e.g.,
“732736) to instructions (e.g., “abort the mission”). Every sequence of numbers listed in his
codebook maps to a unique instruction. However, James is a lazy spy; he only checks in on the
radio occasionally. His superiors know this, and so they assume that he will start listening to their
sequence at a random digit, each equally likely (as early as the first, as late as the last). Their
instructions are very important though, so it’s essential that they figure out exactly how long it will
take James to decode the message. As soon as James can be positive that there is only one message
that matches what he is hearing (factoring in that he may have missed some digits before he tuned
in), he will stop listening and take action.

Each digit takes one second to read, and there will be silence one second after the last digit (telling
James the message is complete). For each message that headquarters might send, you have to
determine how long it will take James to understand the message on average. Note that it is
possible that sometimes even after listening until the end of the message, James cannot be sure
which message he heard. In that case, print “Impossible”.

The Problem:

Given the codebook, and the code to be sent, find the expected amount of time that James will
spend listening to his radio.

The Input:

You will be given an integer, N (< 100,000), specifying the number of sequences in James’s
codebook. The next N lines will each contain one sequence, with total length not exceeding
100,000 (i.e., the length of all sequences together will not exceed 100,000).

The Output:

Output N lines. The i™ line should contain the expected number of seconds James will spend
listening before he can be certain of the message he is hearing if headquarters sends the i message

in his codebook. Your answer will be judged to a relative error of 10, Ifit’s possible that James
might not ever be able to determine the message, print out “Impossible” for that line.

Page | 21

Sample Input Sample Output

4 2

17383 1.333333333
126 Impossible
385 Impossible
485

Sample Explanation: For the first message (17383), there are 5 possible spots where James could
tune in. If he tunes in at the first digit, it could still be the second sequence (126) since both
contain a 1. Once he hears the following 7, it could only be the first sequence. Therefore, tuning
in at this digit takes 2 seconds. If he tunes in on the second digit, it takes 1 second. The third digit
takes 3 seconds, the fourth digit takes 2 seconds, and the fifth digit takes 2 seconds (he hears the
3, then hears silence). This gives an average of (2+1+3+2+2)/5 =2.

For the third sequence, if he tunes in on the 8 then he will hear “85 ”, and therefore cannot tell it
apart from the fourth sequence. Thus the answer here is “Impossible”.

Page | 22

