
Page | 1

UCF Local Contest — September 1, 2018

Window on the Wall
filename: window

(Difficulty Level: Easy)

Anya (Arup’s daughter) would like to add a window on the
wall in her room. She asks Travis (the mathematician) to
figure out the largest window she can have on her wall.
Travis consults Chris (the engineer) to see if there are any
structural constraints. Chris explains that there must be a
minimum distance between the wall perimeter and the
window perimeter for the wall to hold the window;
otherwise the entire structure collapses.

The Problem:

Given the width and height of a rectangular wall and the window-border gap (minimum distance
required between the perimeter of the wall and the perimeter of the window), determine the area
of the largest rectangular window that can be installed on the wall.

The Input:

The input contains one line with three space-separated positive integers, w, h, and d (w, h < 1000,
d < 100), representing, respectively, the wall’s width, wall’s height, and the minimum window-
border gap amount needed.

The Output:

The output should be an integer on one line by itself, which represents the area of the largest
rectangular window that can be installed. If it is not possible to install a window, output 0 (zero).

Sample Input Sample Output

40 25 5

450

30 20 12

0

30 20 50

0

999 888 7

860890

Page | 2

UCF Local Contest — September 1, 2018

Parity of Strings
filename: parity

(Difficulty Level: Easy)

The historical battle between numbers and strings has taken a new twist: numbers are bragging on
their categorization of being “even” or “odd” and strings lacking such feature. But don’t count
strings out yet!

A string is considered “even” if every letter in the string appears an even number of times; the
string is “odd” if every letter in the string appears an odd number of times.

The Problem:

Given a string, determine whether the string is even, odd, or neither.

The Input:

The input consists of a single line, starting in column 1, not exceeding column 70, and containing
only the lowercase letters (at least one letter).

The Output:

The output consists of a single integer: print 0 (zero) if the string is even, 1 (one) if the string is
odd, or 2 if the string is not even and is not odd (i.e., it is neither).

Sample Input Sample Output

coachessoaehwwwwww

0

coachesarefun

2

coachesc

1

Page | 3

UCF Local Contest — September 1, 2018

Historical TV Remote Control
filename: remote

(Difficulty Level: Easy/Medium)

As Dr. Orooji is getting older, he is becoming more attached to older items and has difficulty
letting go of them (he claims they have historical value). For example, he still has the first table
he got for the programming team! The situation is the same at home, e.g., there is a broken TV
remote control but Dr. O still uses it, because he considers it an old item with historical value!

The Problem:

The old remote control has 12 buttons: digits 0-9, channel down, and channel up. There are no
other buttons on the remote control. Some digits on the remote don’t work but channel up/down
always works. So, to get to a particular channel, Dr. O sometimes has to use the channel up/down.
For example, let’s assume digits 0 and 5 on the remote don’t work:
If Dr. O wants to watch channel 102, he would select 99 and then “channel up” 3 times.
If he wants to watch channel 597, he would select 611 and then “channel down” 14 times.

Given the digits that do not work and a target channel, determine how many times Dr. O needs to
hit channel up or down. Dr. O, of course, wants to exert the least energy, hence he wants to hit the
channel up/down the minimum number of times. Assume that Dr. O will enter a channel between
0 and 999 (inclusive) to start and that channel down has no effect at 0 and channel up has no effect
at 999.

The Input:

The first input line contains an integer, n (1 ≤ n ≤ 9), indicating how many digits on the remote do
not work. These broken digits are listed (in increasing order) on the same input line. The second
input line provides the target channel (an integer between 1 and 999, inclusive).

The Output:

The output consists of a single integer, indicating how many times Dr. O needs to hit channel
up/down. Note that, since one or more digits work, it is always possible to reach the target channel.

Sample Input Sample Output

3 0 8 9

35

0

4 1 2 5 9

250

50

Page | 4

UCF Local Contest — September 1, 2018

Circle Meets Square
filename: circlesquare

(Difficulty Level: Medium)

We all know that you can’t put a round peg in a square hole. Asking you to do so in this contest
would be cruel and unusual punishment, which is banned by the Eighth Amendment to the United
States Constitution. But, perhaps a more reasonable problem that the Framers of the Constitution
never thought about is determining if a given circle and square have an intersection of positive
area (overlap), or touch (share a point in common), or don’t touch at all.

The Framers of the US Constitution and the UCF Programming Team coaches would like to know,
given a circle and a square, do the two overlap in some positive area, touch, or don’t touch at all.
Help them out by writing a program to solve the problem!

The Problem:

Given the description of a square and circle in the Cartesian plane, determine if the intersection
between the two has positive area (overlap), is a single point (touches) or doesn’t exist.

The Input:

The first line of input contains three integers: x (-1,000 ≤ x ≤ 1,000), y (-1,000 ≤ x ≤ 1,000), and r
(0 < r ≤ 1,000), representing the x and y coordinates and radius, respectively of the circle.

The second line of input contains three integers: tx (-1,000 ≤ tx < 1,000), ty (-1,000 ≤ ty < 1,000),
and s (0 < s ≤ 1,000), where (tx, ty) represents the coordinates of the bottom left corner of the square
and s represents the side length of the square. The square’s top right corner is (tx+s, ty+s), so that
its sides are parallel to the x and y axes.

The Output:

If the circle and square don’t touch, output 0 (zero). If they touch at a single point, output 1
(one). If they overlap in positive area, output 2 (two).

Page | 5

Sample Input Sample Output

0 0 5

2 3 1

2

0 0 5

5 0 6

1

0 5 4

-1 -1 1

0

Pictures of the Sample Input:

First Sample Second Sample Third Sample

Page | 6

UCF Local Contest — September 1, 2018

SGA President
filename: sga

(Difficulty Level: Medium)

After an amazing performance at World Finals, Timothy and Alex, who are no longer eligible for
ICPC, have decided to look for a new challenge. They'd like to run for SGA President and Vice
President. Unfortunately, they have realized that with tickets from the previous election such as
Josh/Jad and Brad/Breon, they have no hope of winning because all winning tickets must have two
distinct names that start with the same first letter, so Timothy and Alex just won't do.

Naturally, Timothy was despondent about this revelation and to make himself feel better came up
with a problem for locals. Given the names of each student at UCF, Timothy wondered how many
potential winning pairs for SGA President and Vice-President there might be. In order for a pair
to have the potential to win, their names must be different but start with the same first letter. Since
President and Vice President are different roles, we count the ticket of Josh and Jad differently
than the ticket of Jad and Josh. (The first name listed is the candidate for President while the
second name listed is the corresponding candidate for Vice President.) Note that UCF has many
students that share a first name, so there might be several potential winning pairs of Josh and Jad.
For example, if there are 10 Joshes and 3 Jads on campus, there are 30 Josh/Jad pairs with a Josh
running for President and a Jad running for Vice President (and these should all be counted).

The Problem:

Given the names of each UCF student, calculate the number of possible President/Vice-President
pairs who have a potential to win the SGA election.

The Input:

The first line of input contains a single positive integer, n (n ≤ 66,1831), representing the number
of UCF students. The following n lines each contain a single first name of one UCF student. All
names will consist of uppercase letters only and be between 1 and 20 letters long, inclusive. Each
line represents a distinct student, but distinct students may have the same first name.

The Output:

On a line by itself, output the total number of President-Vice President pairs that have a chance to
win the SGA election.

1 This was the actual enrollment at UCF in the 2017 fall semester!

Page | 7

Sample Input Sample Output

10

JOSH

JAD

JENNIFER

JENNIFER

JALEN

HASAAN

ALI

TIM

ALEX

TRAVIS

22

5

ALEX

BRANDY

CELINE

DWAYNE

ELIZABETH

0

Page | 8

UCF Local Contest — September 1, 2018

Rounding Many Ways
filename: rounding

(Difficulty Level: Medium)

Timothy and Alex’s hopes and dreams of running for UCF’s Student Government Association
have been crushed by the realization that their campaign ticket would not be alliterative. So, they
have decided to analyze statistics from many different polls given to students to determine what
pair of programming team members would be best situated to win the election. However, there is
a problem. All of the statistics have been rounded off. This would not be an issue apart from the
fact that the pollsters forgot to mention how the number was rounded!
(Math Terminology Note: if we round, say, 198 to 200, then 198 is called the “true value” and 200
is called the “rounded value”.)

For example, the rounded value 750 could have come from a true value rounded to the nearest 10
or maybe even the nearest 250. It may also have come from a true value rounded to the nearest 1
(thus not rounding it at all). Thus, the true value could have been something like 625 or maybe
much closer like 748.

Luckily for Timothy and Alex, after some reconnaissance work, they have discovered the general
rounding methods used:

● The original statistic was a positive integer S
● Then a positive integer X was chosen such that X is a divisor of some power of 10, i.e.,

there exist non-negative integers Y and Z such that X * Y = 10Z
● Finally the statistic S was rounded to the nearest positive multiple of X to get the rounded

value N, i.e., there exists a positive integer W such that X * W = N and |S – N| is minimized.

The Problem:

Given the rounded value, find all the different ways it could have been rounded (derived). In other
words, given N and using the above constraints, you are to find all values of X that satisfy both of
the following two equations:

● X * Y = 10Z
● X * W = N

The Input:

The first and only line of input contains an integer, N (1 ≤ N ≤ 1018), representing the rounded
value.

Page | 9

The Output:

First print out a single line containing an integer representing the number of different X values that
the rounded value N could have been derived from. Then print out all of these values of X, in
increasing order, on separate lines.

Sample Input Sample Output

30

4

1

2

5

10

120 8

1

2

4

5

8

10

20

40

8

4

1

2

4

8

Explanation for the first Sample Input/Output:

Output: 1

 X = 1, Y = 10, Z = 1, W = 30

Rounded to nearest multiple of 1: 1*10=10, 1*30=30

Output: 2

 X = 2, Y = 5, Z = 1, W = 15

Rounded to nearest multiple of 2: 2*5=10, 2*15=30

Output: 5

 X = 5, Y = 2, Z = 1, W = 6

Rounded to nearest multiple of 5: 5*2=10, 5*6=30

Output: 10

 X = 10, Y = 1, Z = 1, W = 3

Rounded to nearest multiple of 10: 10*1=10, 10*3=30

Page | 10

UCF Local Contest — September 1, 2018

World Cup Fever
filename: soccer

(Difficulty Level: Medium/Hard)

The 2018 World Cup was held recently in Russia. Some great soccer countries (e.g., Italy,
Netherlands, Chile, USA) did not qualify for this World Cup. These countries have found out that
they needed more effective passing.

The Problem:

Given the player positions for two teams, determine the minimum number of passes needed to get
the ball from one player to another player. For the purposes of this problem, players do not change
position, i.e., they do not move.

Player P1 can pass the ball directly to P2 if they are on the same team and no other player is in
between the two players.

Let’s assume:

- P1 and P2 are on the same team
- P1, P2, P3 form a line with P3 between P1 and P2
- There are no other players on the line formed by P1, P2, P3

Then,
- If P3 is on the other team, P1 cannot pass the ball directly to P2.
- If P3 is on the same team, P1 can pass the ball to P3 to pass it to P2.

The Input:

The first input line contains an integer, n (2 ≤ n ≤ 11), indicating the number of players on each
team. The second input line contains 2n integers, providing the (x,y) coordinates for the n players
on Team 1; the first integer on this input line is the x coordinate for Player 1, the second integer is
the y coordinate for Player 1, the third integer is the x coordinate for Player 2, etc. The third input
line provides (in a similar fashion) the (x,y) coordinates for the n players on Team 2. Assume that
all coordinates are integers between 1 and 999 (inclusive) and that all players are on distinct
locations, i.e., no two players occupy the same spot (point).

Assume Player 1 on Team 1 has the ball and wants to pass the ball to Player n on Team 1. Assume
that any player can pass the ball any distance.

The Output:

The output consists of a single integer, indicating the minimum number of passes needed to get
the ball from Player 1 on Team 1 to Player n on Team 1. If it is not possible to get the ball from
Player 1 to Player n, print -1.

Page | 11

Sample Input Sample Output

3

10 15 13 17 10 19

10 17 16 17 13 19

2

5

1 1 3 1 5 1 7 1 9 1

2 1 4 1 6 1 8 1 10 1

-1

3

1 1 5 5 2 2

10 10 50 50 20 20

1

Page | 12

UCF Local Contest — September 1, 2018

First Last Sorting
filename: firstlast

(Difficulty Level: Medium/Hard)

Arup has just created a data structure that makes the two following list transformations in constant
O(1) time:

a. Take any element in the list and move it to the front.
b. Take any element in the list and move it to the back.

You've realized that sorting speed can be improved using these transformations. For example,

consider the input list:

 8, 3, 6, 7, 4, 1, 5, 2

We can do the following sequence of transformations to sort this list:

 8, 3, 7, 4, 1, 5, 2, 6 (move 6 to end)

 8, 3, 4, 1, 5, 2, 6, 7 (move 7 to end)

 2, 8, 3, 4, 1, 5, 6, 7 (move 2 to front)

 1, 2, 8, 3, 4, 5, 6, 7 (move 1 to front)

 1, 2, 3, 4, 5, 6, 7, 8 (move 8 to end)

You are now curious. Given an input array of distinct values, what is the fewest number of these

first/last operations necessary to sort the array?

The Problem:

Given an initial permutation of the integers 1, 2, ..., n, determine the fewest number of first/last
operations necessary to get the list of values sorted in increasing order.

The Input:

The first line of input will contain a single positive integer, n (n ≤ 105), representing the number
of values to be sorted. The next n lines contain one integer each. All of these integers will be
distinct values in between 1 and n (inclusive), representing the original order of the data to sort for
the input case.

The Output:

On a line by itself, output the fewest number of first/last operations necessary to sort the input list.

Page | 13

Sample Input Sample Output

8

8

3

6

7

4

1

5

2

5

5

1

2

5

3

4

1

Page | 14

UCF Local Contest — September 1, 2018

Team Shirts/Jerseys
filename: shirts

(Difficulty Level: Medium/Hard)

The Legendary Mathematician Travis and his friends are in a recreational (rec) league for
competitive programming. Travis has n friends and his friends want to show a sense of unity for
this competitive programming league, so they splurged on team shirts/jerseys each of which has
an integer between 1 and 99 (inclusive) on the back. Each of Travis’s friends have already selected
their own (not necessarily distinct) jersey number so we have a list of n integers. Travis now needs
to choose his jersey number to complete a list of n+1 integers. Travis will also choose an integer
between 1 and 99 (inclusive) and he does not have to pick a number different from what his friends
have picked (i.e., he can choose to duplicate a jersey number).

Even though Travis can choose any jersey number, he wants to show why he is considered to be a
legendary mathematician. Travis has a favorite positive integer and he wants to select his jersey
number such that he would be able to pick a set of numbers from the list of n+1 integers,
concatenate this set of numbers together, and reach his favorite integer without extra leading or
trailing digits (since Travis wants his favorite integer and not some other integer, he is trying to do
so without any extra trailing or leading digits).

Travis has the fortunate option to choose his jersey number last. Now he just needs to determine
if he can select some number that guarantees he can form his favorite integer. For example,
suppose Travis’s friends have selected the jersey numbers 3, 10, 9, and 86. Then, by selecting the
number 75, Travis could form his favorite positive integer 8,675,310. Note that Travis didn’t need
to use the jersey number 9.

Note that if Travis chooses to use a jersey number, he must use the number completely, i.e., he
cannot use just some of the digits in the number. For example, if he decides to use 75 in the above
example, he must use “75”; he cannot just use “7” or use just “5”. Note also that if he wants to
use a particular jersey number multiple times, he must have multiple friends with that jersey
number. For example, if he wants to use 75 multiple times, he must have multiple friends with the
number 75 (he can, of course, pick 75 for himself as well to increase the number of occurrences of
75 in the list of n+1 numbers).

We now have to break the secret that Travis is very temperamental! He tends to gain and lose
friends very easily (so much for that whole unity thing); he also changes his favorite integer more
often than the lights change at a busy intersection. For these reasons, Travis needs your help to
write a program to solve this problem for a general set of friends and favorite numbers.

Page | 15

The Problem:

Given a set of positive integers representing friends’ jersey numbers, and a favorite integer,
determine if Travis can choose a jersey number (for himself) that can allow for the creation of his
favorite integer via concatenation of zero or more friends’ numbers and potentially his number.
Additionally, since this is a rec league, the list of friends may contain duplicate jersey numbers,
and Travis can choose an already chosen number for his shirt.

The Input:

The first line of input contains exactly one positive integer, t (t < 1,000,000,000), representing
Travis’s favorite integer. The second line of input contains exactly one positive integer, n (n ≤
25), representing how many friends Travis has today. The next input line contains n space
separated integers which denote the jersey number chosen by each of Travis’s friends. The jersey
numbers will be between 1 and 99 (inclusive) and will have no leading zeroes, e.g., the input would
have jersey number 7 but not 07.

The Output:

If Travis is capable of reaching his favorite integer with (or without) his set of friends, print 1
(one); otherwise output 0 (zero).

Sample Input Sample Output

707

2

7 24

1

70707

2

7 7

0

1122

3

21 1 23

0

715

1

75

0

Page | 16

UCF Local Contest — September 1, 2018

Alex is Right
filename: alex

(Difficulty Level: Hard)

While on the first leg of their journey to Beijing
(China) for the 2018 ACM ICPC World Finals,
Alex and Timothy (two of the team members)
were in a vigorous debate. The discussion was
about their upcoming 13-hour flight from
Washington, DC to Beijing. More specifically,
whether the airplane would travel (a) west over
the Pacific, or (b) east over the Atlantic, or (c)
North then South passing by the North Pole.
Alex argued that their flight would obviously
fly them relatively close to the North Pole but
Timothy, the self-proclaimed “Geometry
Master”, contested this as nonsense saying that
there’s no way the pilots would choose such a
suboptimal route.

To Timothy’s disappointment, once they landed in Washington, DC, Alex pulled up a flight map
and proved that he was right by showing Timothy as well as Arup and Eric (who both supported
Timothy’s viewpoint) that their upcoming flight would indeed fly a route close to the North Pole.

The Problem:

Given the locations of two distinct points (cities) on the earth, calculate the minimum Euclidean
distance between the airplane and the North Pole that will be achieved during the shortest possible
flight around the surface of the earth between these two cities, and determine if Alex’s claim is
correct. Assume that the airplane is a point on the surface of the earth at all time, i.e., the airplane
does not have an altitude.

Alex’s claim can be formally defined as follows:

The minimum Euclidean distance from the airplane to the North Pole, while traveling
along an optimal (shortest) flight around the earth, is strictly less than that of the distance
from the North Pole to both the starting and ending points.

The Euclidean distance between two points (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) and (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1) is defined as �(𝑥𝑥0 − 𝑥𝑥1)2 + (𝑦𝑦0 − 𝑦𝑦1)2 + (𝑧𝑧0 − 𝑧𝑧1)2. Note that this is not the same as the arc distance that
would need to be traveled along the surface of the earth.

To refresh your memory, below is the conversions from latitude and longitude to Cartesian
coordinates on a sphere of radius R:

Page | 17

𝑥𝑥 = 𝑅𝑅 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 𝑦𝑦 = 𝑅𝑅 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝑐𝑐𝑙𝑙𝑙𝑙(𝑙𝑙𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) 𝑧𝑧 = 𝑅𝑅 ∗ 𝑐𝑐𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙)

Notes:

- Use 6,371 km for the radius of the earth in your calculations.
- The North Pole is located at 90 degrees latitude and 0 degrees longitude.

The Input:

The first line of input consists of a single integer, T (1 ≤ T ≤ 500), representing the number of trips
Alex and Timothy went on. Each trip consists of two input lines. The first line of each trip consists
of two space-separated real numbers latitude and longitude (-90 ≤ latitude < 90; -180 < longitude

≤ 180) with exactly 6 digits after the decimal point, representing (respectively) the latitude and
longitude of the departure city of this trip. The second input line of each trip contains the latitude
and longitude of the destination city in the same format as the departure city. It is guaranteed that
the departure and destination cities will be at distinct location (and not on the North Pole) and that
there will be exactly one shortest possible flightpath between these two cities.

The Output:

For each trip, output two lines. For the first line, output either Alex or Timothy representing
who was right for this trip. On the next line for each trip, output the minimum Euclidean distance
between the North Pole and the plane that will be achieved while flying from the departure city to
the destination city. Output your answer with exactly 6 digits after the decimal point. Answers
will be judged correct if the absolute or relative error is at most 1e-6 km. Output a blank line after
each trip.

Note #1: Use the value of PI (π) provided by the library of your chosen language.

Note #2: It is guaranteed that in cases where Alex is right, the absolute value of the difference
between the minimum distance along the flightpath to the North Pole and the minimum distance
to the destination is no less than 1 km.

Sample Input Sample Output

2

38.946474 -77.437568

39.918620 116.443983

16.000000 175.000000

-45.000000 -93.000000

Alex

928.608923

Timothy

7668.327025

Page | 18

UCF Local Contest — September 1, 2018

Chocolate Gifts
filename: chocolate

(Difficulty Level: Hard)

This is Timothy’s last semester here at UCF, and he is determined to finish college as the most
favorite Knight ever! With his “extensive” friendship knowledge, he has determined that
chocolate brings smile to any face and that is the key to becoming the most favorite Knight. So,
Timothy has decided to send a chocolate bar to each and every UCF student. Specifically, Timothy
will send a rectangular chocolate bar (made of smaller rectangular chocolate pieces assembled
together) to as many UCF students as he can.

However, Timothy realizes that if two students see that they both received the same chocolate
gifts, they would be repulsed and find this otherwise kind act suddenly creepy. To combat this,
Timothy has decided that each gift he sends must be different. Thus, no pair of chocolate bars can
have the same dimensions. But, because the smaller pieces have designs on them, a 5-by-3
chocolate bar is considered different than a 3-by-5 bar. Note, however, that a 5-by-5 (i.e., square)
bar is the same as another 5-by-5 bar even though the smaller pieces have designs on them.

Timothy realized that he could of course send as many students unique chocolate bars as he wants
because there are obviously an infinite number of sizes of chocolate bars he could make. However,
because Timothy is no longer on the programming team, he is not that rich anymore! A chocolate
bar with width a and height b will cost Timothy a*b and he has limited savings in his bank account.
Thus, he can only afford a certain number of chocolate bars. More specifically, the total cost for
the bars cannot exceed his savings. He thus needs your help to determine, given his limited budget,
the maximum number of students he could send chocolate bars to such that no pair of students
receive chocolate bars with the same dimensions.

In addition to all of this, Timothy must send the chocolate bars in nicely wrapped boxes, each bar
in a separate box (i.e., not all bars in one box). But, all the boxes have the same size, i.e., there are
not several boxes with varying sizes to choose from. Thus, every chocolate bar he makes must fit
into one box. Furthermore, when putting a bar in a box, the bar cannot be rotated as this would
cause the pattern on the chocolate to not match the pattern on the box. For example, let’s assume
the box has width 3 and height 5, then a 3-by-5 bar would fit in the box but a 5-by-3 bar will not
fit in the box (again, the bar cannot be rotated).

The Problem:

Given Timothy’s savings balance, determine the maximum number of rectangular chocolate bars
he could make, such that no two bars have the same dimensions. Note that Timothy does not need
to use up all of his money, but he cannot (of course) exceed his savings balance. Note also that
each bar must fit into the given box size, i.e., the box size also restricts the bars he can make.

Page | 19

The Input:

The input consists of a single line containing three positive integers, w, h, and x (1 ≤ w, h, x ≤ 1018)
representing (respectively) the width and height of each box and Timothy’s savings balance.

The Output:

Output a single line containing an integer representing the maximum number of students Timothy
can send chocolate bars to given his constraints.

Sample Input Sample Output

2 1 2

1

3 2 11

4

8 3 64

13

Page | 20

UCF Local Contest — September 1, 2018

Cupcake Bonuses
filename: bonuses

(Difficulty Level: Hard)

The Unsweet Cupcake Factory (UCF) has recently seen a sudden increase in sales and business
has been booming. Thus, the company has been rapidly expanding and is hiring new people nearly
every day. Furthermore, to increase company morale (because the sugarless cupcakes don’t seem
to be helping), UCF has been paying out bonuses to employees belonging to certain departments
according to each individual’s performance.

The company is structured as follows:

● Each employee has exactly one direct supervisor (except for the CEO who has no
supervisor).

● An employee can have zero or more direct subordinates (employees who have him/her as
their supervisor).

● Each employee heads their own department.
● Every employee is a part of their own department and all of the departments that their

supervisor is a part of (thus, the CEO is a part of only one department and all employees
are a part of that department).

When UCF decides that a certain department is doing well, it pays out bonuses to all the employees
that are a part of that department. Bonuses are calculated by multiplying the bonus amount B with
the employee’s bonus multiplier M. All employees begin with the same bonus multiplier, but
depending on performance, an employee’s bonus multiplier can change thus potentially changing
the amount of money that employee gets for future bonuses.

UCF has found it to be quite a nuisance to handle the sudden increase in staff size. Thus, they
have enlisted you to create a program which can help keep track of the amount of money paid out
to employees in bonuses.

The Problem:

Given different queries, keep track of the amount of money paid to the different employees in
bonuses. Queries will be one of four types:

1. Hire a new employee and assign him/her their supervisor.
2. Update an employee’s bonus multiplier.
3. Pay out bonuses to all employees in the department headed by a given employee.
4. Retrieve (Display) the total amount of money paid to a given employee.

Employees are numbered starting at 1 (the CEO) and all new employees are given the next integer
employee identification (id) number in the order they were hired into the company. Initially, the
company has only the CEO, i.e., only one employee.

Page | 21

The Input:

The input will begin with a line containing two integers, n and S (1 ≤ n ≤ 105; 0 ≤ S ≤ 106),
representing (respectively) the number of queries to follow and the starting bonus multiplier for
all new hires (including the CEO). The next n lines describe the queries and each is in one of the
following four formats:

● “1 i” meaning that a new employee is hired and has the supervisor with employee id i.
● “2 i M” meaning that the bonus multiplier of the employee with the id i is now equal to M

(0 ≤ M ≤ 106).
● “3 i B” meaning that a bonus with the base amount, B (0 ≤ B ≤ 106), is paid out to all

employees in the department headed by i. Note that the bonus for an employee is calculated
by multiplying the bonus amount B with the employee’s bonus multiplier M.

● “4 i” representing a query asking for the amount of money paid in bonuses so far to the
employee with the id i.

Assume that all the input values are valid, e.g., when referring to a supervisor (or an employee),
assume that the supervisor (or the employee) exists.

Note that there will not be a query of Type-1 to indicate the hiring of CEO, i.e., assume the
company starts with one employee (CEO).

The Output:

For each Type-4 query, print out a single line containing an integer representing the amount of
money paid in bonuses to the employee in question thus far.

Page | 21

Sample Input Sample Output

7 1

3 1 10

4 1

2 1 2

1 1

3 1 5

4 1

4 2

10

20

5

13 10

1 1

1 1

2 2 20

3 1 5

4 1

4 2

4 3

1 2

3 2 7

4 1

4 2

4 3

4 4

50

100

50

50

240

50

70

