
Fast Modular Exponentiation 

 
The first recursive version of exponentiation shown works fine, but is very slow for very large 

exponents. It turns out that one prevalent method for encryption of data (such as credit card 

numbers) involves modular exponentiation, with very big exponents. Using the original recursive 

algorithm with current computation speeds, it would take thousands of years just to do a single 

calculation. Luckily, with one very simply observation and tweak, the algorithm can take a second 

or two with these large numbers. 

 

The key idea is that IF the exponent is even, we can exploit the following mathematical formula: 

 

be = (be/2) x (be/2). 

 

The key here is that we calculate be/2 only ONCE and can reuse the value that we get to do the 

multiplication. 

 

But, even in this situation, the problem is that the sheer size of be/2 for very large e would make 

that one multiplication very slow. 

 

But, consider the situation, were instead of calculating be, we were calculating be % n, for some 

relatively large value of n, maybe 20-100 digits. In this situation, the answer and any intermediate 

answer that is necessary, never exceeds n2, which is relatively few digits. 

 

In this case, reusing the value of be/2 % n accrues a HUGE benefit. 

 

Note: When we test the following function (with mod) in C, it’s important to choose a base that is 

smaller than 215 to avoid overflow errors. The exponent may be any positive allowable int. 

 

int modPow(int base, int exp, int n) { 

     

    base = base%n; 

     

    if (exp == 0) 

        return 1; 

         

    else if (exp == 1) 

        return base; 

         

    else if (exp%2 == 0) 

        return modPow(base*base%n, exp/2, n); 

     

    else 

        return base*modPow(base, exp-1, n)%n;  

} 



If the exponent passed to the algorithm is odd, the next recursive call will contain an even 

exponent. Any call to an even exponent divides it by 2. Thus, for every two recursive calls, we 

divide the exponent by two. This, given the exponent, the number of steps the algorithm takes is 

O(log exp). Thus, even if exp = 1030, this would take at most about 200 recursive calls total, which 

is much, much better than calculating this using a for loop that runs 1030 times. 

 

This idea of “repeated squaring” or “dealing with even exponents by dividing by 2”, can be 

replicated in many places. 

 

One place is matrix exponentiation. If we have a matrix we wish to raise to a high power (usually 

in these cases we might want the entries mod some value), then we can utilize this same exact 

concept! 

 

Your multiplication would have to be a function and the recursive code would look a great deal 

like what is shown on the previous page, except for * would be replaced by the multiply function. 

 

If you are clever, you can build matrices whose entries are answers to particular questions. 

Consider the following: 

 

Let’s say I wanted to add up (1 + a + a2 + an) mod p. I could calculate the following: 

 

[
𝑎 1
0 1

]
𝑛

[
1
1
] 

 

Notice that for n = 1, the result is[
𝑎 + 1
1

]. 

For n = 2, the result is [𝑎
2 + 𝑎 + 1

1
]. We can prove via induction that the result, in general is 

 

[
𝑎 1
0 1

]
𝑛

[
1
1
] = [∑𝑎𝑘

𝑛

𝑘=0

1

] 

 

This, if we want to find that desired sum, we simply set up the fast modular matrix exponentiation 

described above, multiplying the result with the column matrix 1, 1. 

 

In general, a very high term of any linear recurrence relation mod a value can be calculated using 

this technique. Basically, you set up your matrix to store the coefficients of the recurrence relation 

and the last column vector will store the “base cases” of the recurrence, so that in successive 

multiplications, the resulting column vector will store the last few values of the recurrence relation 

needed to build the next value of the recurrence relation. 


