
UCF Local Contest — September 1, 2012 
 

Exact Change 
filename: change 

 
Whenever the UCF Programming Team travels to World Finals, Glenn likes having the exact 
amount of money necessary for any purchase, so that he doesn’t have to count and receive 
change. Of course, most countries don’t have many different denominations of coins, so Glenn 
creates different “packages” with him, each with some particular amount of money, in cents. 
Glenn would like to know which amount of money (in cents), is the smallest that he can’t pay for 
exactly, with some combination of his packages. 
 
The Problem: 

 
Given a list of positive integers, determine the smallest integer that can’t be represented as the 
sum of some subset of the integers on the list. 
 
The Input: 
 
The first input line contains a single positive integer, n (1 < n ≤ 100), indicating the number of 
sets of coin packages to evaluate.  Each of the n input sets follows. The first line of each input set 
contains only an integer, c (1 ≤ c < 31), representing the number of different packages of coin for 
that input set. The following line contains exactly c positive integers, each separated by a single 
space, representing the value of each of the c packages in cents. The sum of these c integers is 
guaranteed not to exceed 109.  Note that the package values are not necessarily distinct, i.e., there 
may be multiple packages with the same value. 
 
The Output: 
 
For each set of packages, first output “Set #i: ” where i is the input data set number, 
starting with 1. Follow this with a single positive integer, the smallest value that can’t be 
represented as a sum of the values of a subset of the packages given.  Note that a package value 
can be used at most once in a subset unless there are multiple packages with that value (if there 
are m occurrences of a package value, up to m occurrences of that value can be used in a subset). 
Leave a blank line after the output for each test case.  Follow the format illustrated in Sample 
Output. 
 
 
 
 
 
(Sample Input/Output on the next page) 
 
 
 
 
 



 2  

Sample Input: 
 
3 
6 
12 8 1 2 4 100 
3 
1 2 3 
6 
3 1 3 2 3 3 
 
Sample Output:  
 
Set #1: 28 
 
Set #2: 7 
 
Set #3: 16 
 
 
 




