
Greedy Algorithms 

 

A greedy algorithm is one where you take the step that seems the best at the time while 

executing the algorithm. Some of the graph algorithms we’ve already seen, such as 

Dijkstra’s and Kruskal’s are considered greedy because they don’t consider all 

possibilities, but still obtain the optimal answer, because of the nature of the problem and 

algorithm. (Kruskal’s works because it’s always safe to put an edge in an MST that’s the 

minimal edge that connects two separate forests. Dijkstra’s works because the no 

negative edge weight assumption infers that it’s impossible to go to a vertex outside of S 

and return back to S with a negative sum of edges.) 

 

Here we’ll look at a few problems that have greedy solutions. The hardest part of these 

problems is proving that some greedy algorithm correctly solves the problem. There are 

many problems for which no greedy algorithm correctly solves it. There are other 

problems that do have greedy solutions, but a majority of greedy algorithms one could 

devise are incorrect. One should always be a bit skeptical when evaluating a potential 

greedy algorithm. Before committing to one, one should prove the algorithm’s 

correctness. 

 

Example #1: Coin Changing 

The goal here is to give change with the minimal number of coins as possible for a 

certain number of cents using 1 cent, 5 cent, 10 cent, and 25 cent coins. 

 

The greedy algorithm is to keep on giving as many coins of the largest denomination 

until you the value that remains to be given is less than the value of that denomination. 

Then you continue to the lower denomination and repeat until you've given out the 

correct change. 

 

This is the algorithm a cashier typically uses when giving out change. The text proves 

that this algorithm is optimal for coins of 1, 5 and 10. They use strong induction using 

base cases of the number of cents being 1, 2, 3, 4, 5, and 10. Another way to prove this 

algorithm works is as follows: Consider all combinations of giving change, ordered from 

highest denomination to lowest. Thus, two ways of making change for 25 cents are 1) 10, 

10, 1, 1, 1, 1, 1 and 2) 10, 5, 5, 5. The key is that each larger denomination is divisible by 

each smaller one. Because of this, for all listings, we can always make a mapping for 

each coin in one list to a coin or set of coins in the other list. For our example, we have: 

 

10  10  1 1 1 1 1 1 1 1 1 1 

10  5  5  5  5 

 

Think about why the divisibility implies that we can make such a mapping. 

 

Now, notice that the greedy algorithm leads to a combination that always maps one coin 

to one or more coins in other combinations and NEVER maps more than one coin to a 

single coin in another combination. Thus, the number of coins given by the greedy 

algorithm is minimal. 



 

This argument doesn't work for any set of coins w/o the divisibility rule. As an example, 

consider 1, 6 and 10 as denominations. There is no way to match up these two ways of 

producing 30 cents: 

 

10 10 10 

6 6 6 6 6 

 

In general, we'll run into this problem with matching any denominations where one 

doesn't divide into the other evenly. 

 

In order to show that our system works with 25 cents, an inductive proof with more cases 

than the one in the text is necessary. (Basically, even though a 10 doesn't divide into 25, 

there are no values, multiples of 25, for which it's advantageous to give a set of dimes 

over a set of quarters.) 

 

 

Example #2: Single Room Scheduling Problem 

Given a single room to schedule, and a list of requests, the goal of this problem is to 

maximize the total number of events scheduled. Each request simply consists of the 

group, a start time and an end time during the day. 

 

Here's the greedy solution: 

 

1) Sort the requests by finish time. 

2) Go through the requests in order of finish time, scheduling them in the room if the 

room is unoccupied at its start time. 

 

Now, we will prove that this algorithm does indeed maximize the number of events 

scheduled using proof by contradiction. 

 

Let S be the schedule determined by the algorithm above. Let S schedule k events. We 

will assume to the contrary, that there exists a schedule S' that has at least k+1 events 

scheduled. 

 

We know that S finishes its first event at or before S'. (This is because S always 

schedules the first event to finish. S' can either schedule that one, or another one that ends 

later.) Thus, initially, S is at or ahead of S' since it has finished as many or more tasks 

than S' at that particular moment. (Let this moment be t1. In general, let ti be the time at 

which S completes its ith scheduled event. Also, let t'
i be the time at which S' completes 

its ith scheduled event.) 

We know that  

 

1) t'
1   t1 

2) t'
k+1 < tk+1 since S' ended up scheduling at least k+1 events. 

 



Thus there must exists a minimal value m for which 

 

t'
m < tm and this value is greater than 1, and at most k+1. 

 

(Essentially, S' is at or behind S from the beginning and will catch up and pass S at some 

point...) 

 

Since m is minimal, we know that 

 

t'
m-1  tm-1. 

 

But, we know that the mth event schedule by S ends AFTER the mth event scheduled by 

S'. This contradicts the nature of the algorithm used to construct S. Since t'
m-1  tm-1, we 

know that S will pick the first event to finish that starts after time tm-1. BUT, S' was 

forced to also pick some event that starts after tm-1. Since S picks the fastest finishing 

event, it's impossible for this choice to end AFTER S' choice, which is just as restricted. 

This contradicts our deduction that t'
m < tm. Thus, it must be the case that our initial 

assumption is wrong, proving S to be optimal. 

 

 

Example #3: Multiple Room Scheduling 

Given a set of requests with start and end times, the goal here is to schedule all events 

using the minimal number of rooms. Once again, a greedy algorithm will suffice: 

 

1) Sort all the requests by start time. 

2) Schedule each event in any available empty room. If no room is available, schedule the 

event in a new room. 

 

We can also prove that this is optimal as follows: 

 

Let k be the number of rooms this algorithm uses for scheduling. When the kth room is 

scheduled, it MUST have been the case that all k-1 rooms before it were in use. At the 

exact point in time that the k room gets scheduled, we have k simultaneously running 

events. It's impossible for any schedule to handle this type of situation with less than k 

rooms. Thus, the given algorithm minimizes the total number of rooms used. 

 

Example #4: Fractional Knapsack Problem 

Your goal is to maximize the value of a knapsack that can hold at most W units worth of 

goods from a list of items I1,  I2,  ... In. Each item has two attributes: 

 

1) A value/unit; let this be vi for item Ii. 

2) Weight available; let this be wi for item Ii. 

 

The algorithm is as follows: 

 

1) Sort the items by value/unit. 



2) Take as much as you can of the most expensive item left, moving down the sorted list. 

You may end up taking a fractional portion of the "last" item you take. 

Consider the following example: 

 

There are 4 lbs. of I1 available with a value of $50/lb. 

There are 40 lbs. of I2 available with a value of $30/lb. 

There are 25 lbs. of I3 available with a value of $40/lb. 

 

The knapsack holds 50 lbs. 

 

You will do the following: 

 

1) Take 4 lbs of I1. 

2) Take 25 lbs. of I3. 

3) Tale 21 lbs. of I2.  

 

Value of knapsack = 4*50 + 25*40 + 21*30 = $1830. 

 

Why is this maximal? Because if we were to exchange any good from the knapsack with 

what was left over, it is IMPOSSIBLE to make an exchange of equal weight such that the 

knapsack gains value. The reason for this is that all the items left have a value/lb. that is 

less than or equal to the value/lb. of ALL the material currently in the knapsack. At best, 

the trade would leave the value of the knapsack unchanged. Thus, this algorithm 

produces the maximal valued knapsack. 

 

Example #5: Last Alphabetic Subsequence (Top Coder SRM 518 D1 250) 

Problem: Given an alphabetic string, find the subsequence that comes last alphabetically 

in the string. 

 

Any subsequence that starts at the “latest possible letter” is better than other competing 

subsequences. Thus, our first letter should be the alphabetically last letter that occurs in 

the string. As we are iterating through the letters, replace our “current answer” 

completely, if we see a letter that comes after the first letter in our current answer. 

 

Adding a letter to any string makes it alphabetically after its prefix, so by default, we 

would always want to add a new letter to a non-empty string. 

 

If we have some string “geb”, for example, if the next letter is “f”, then we see that “gf” 

is better than “gef” or “gebf”.  

 

Once we make this observation, then our algorithm is streamlined as follows: 

 

1) Keep a stack of letters – initialize it as empty. 

 

Repeat the following steps as you read through each letter in the input string: 



2) When reading in a new letter, pop all letters off the stack that come strictly before the 

current letter, alphabetically. 

3) Push the current letter on the stack. 

 

When we finish, the subsequence we desire can be read off the stack from the bottom to 

the top. (In code, if we were using a stack, we’d pop each item off sequentially, storing 

them from back to front.) 

 

The key in developing this algorithm is to note that given any previous subsequence that 

is the ‘best”, we develop our new best by “building off” the old best. 

 

  

 


