
Topological Sort 

 

The goal of a topological sort is given a list of items with dependencies, (ie. item 5 must 

be completed before item 3, etc.) to produce an ordering of the items that satisfies the 

given constraints. In order for the problem to be solvable, there can not be a cyclic set of 

constraints. (We can't have that item 5 must be completed before item 3, item 3 must be 

completed before item 7, and item 7 must be completed before item 5, since that would 

be an impossible set of constraints to satisfy.) 

 

We can model a situation like this using a directed acyclic graph. Given a set of items and 

constraints, we create the corresponding graph as follows: 

 

1) Each item corresponds to a vertex in the graph. 

2) For each constraint where item a must finish before item b, place a directed edge in the 

graph starting from the vertex for item a to the vertex for item b. 

 

This graph is directed because each edge specifically starts from one vertex and goes to 

another. Given the fact that the constraints must be acyclic, the resulting graph will be as 

well. 

 

Here is a simple situation: 

 

A  B (Imagine A standing for waking up, 

|         |         B standing for taking a shower, 

V      V         C standing for eating breakfast, and 

C  D         D leaving for work.) 

 

Here a topological sort would label A with 1, B and C with 2 and 3, and D with 4.  

 

 

Let's consider the following subset of CS classes and a list of prerequisites: 

 

CS classes: COP 3223, COP 3502, COP 3330, COT 3100, COP 3503, CDA 3103, COT 

3960 (Foundation Exam), COP 3402, and COT 4210. 

 

Here are a set of prerequisites: 

 

COP 3223 must be taken before COP 3330 and COP 3502. 

COP 3330 must be taken before COP 3503. 

COP 3502 must be taken before COT 3960, COP 3503, CDA 3103. 

COT 3100 must be taken before COT 3960. 

COT 3960 must be taken before COP 3402 and COT 4210. 

COP 3503 must be taken before COT 4210. 

 

A goal of a topological sort then is to find an ordering of these classes that you can take. 

 



Topological Sort – Recursive Algorithm based on DFS 

 
We can utilize a DFS in our algorithm to determine a topological sort. In essence, the 

idea is as follows: 

 

When you do a DFS on a directed acyclic graph, eventually you will reach a node with no 

outgoing edges. Why? 

 

Because if this situation never occurred, you eventually hit a cycle since the number of 

nodes is finite. 

 

This node that you reach in a DFS with no outgoing edges is "safe" to place at the end of 

the topological sort. 

 

One could simply then rerun the whole DFS on the same graph n times over, where n is 

the original number of vertices in the graph. (The running time of this would potentially 

be O(V2). Can you determine why?) 

 

But, we can do better than that. Rather, what we find is that as we run through our DFS, 

when we exhaust all of the edges to explore from a particular vertex, if we have added 

each of the vertices "below" it into our topological sort, it is safe then to add this one in.  

 

Consider the following situation: 

 

 

     A 

    / | \ 

          /     |   \ 

        v          v    v 

                                B  C     D 

 

When we explore from A in a DFS, if we have completed marking B, C, and D, as well 

as everything we can explore from those vertices and added all of those vertices (in 

backwards order) into our topological sort, it will then be safe to add A into our 

topological sort. Thus, it is safe to add a vertex into our topological sort when we no 

longer have any more edges to explore from it. 

 

So, basically, all you have to do is run a DFS, with the added component that at the end 

of the recursive function, go ahead and add the node the DFS was called with to the end 

of the topological sort. (An example was done in class.) 

 

 

 

 

 

 



Here a step-by-step description of the algorithm: 

 

1) Do a DFS on an arbitrary node. 

2) The "last" node you reach before having to backtrack, (ie. a node that has no adjacent 

nodes) can safely be put as the last item in the topological sort. In the case above, we can 

safely put our shoes on last, since there is no item that requires shoes to be put on before 

it. 

3) Continue with your DFS, placing each "dead end" node into the topological sort in 

backwards order. 

4) Repeat step 1, picking an unvisited node, if one exists. 

 

Here is some pseudocode for the algorithm: 

 

top_sort(Adjacency Matrix adj, Array ts) { 

     n = adj.last 

     k = n  // assume k is global 

     for i=1 to n 

         visit[i] = false 

     for i=1 to n 

         if (!visit[i]) 

              top_sort_recurs(adj, i, ts) 

} 

 

top_sort_recurs(Adjacency Matrix adj, Vertex start, Array ts){ 

     visit[start] = true 

     trav = adj[start] // trav is pointing to a linked list 

     while (trav != null) { 

          v = trav.ver 

          if (!visit[v]) 

               top_sort_recurs(adj, v, ts); 

          trav = trav.next 

     } 

     ts[k] = start, k=k-1  

} 



Another Topological Sort Example 

 

Consider the following items of clothing to wear: 

 

Shirt  Slacks Shoes Socks Belt Undergarments 

    1                 2                3               4               5                 6 

 

There isn't exactly one order to put these items on, but we must adhere to certain 

restrictions 

 

Socks must be put on before Shoes 

Undergarments must be put on before Slacks and Shirt 

Slacks must be put on before Belt 

Slacks must be put on before Shoes 

 

Using this information we can create this directed acyclic (dag) graph: 

 

6 --------> 1      

| 

| 

v 

2--------->5 

| 

| 

v 

3<---------4 

 

This is created by placing a directed edge from each item that must come before another 

item to that other item. 

 

 



Let's trace through the pseudocode with the example graph: 

 

6 --------> 1      

| 

| 

v 

2--------->5 

| 

| 

v 

3<---------4 

 

When we call top_sort_recurs(adj, 1, ts), we can't get anywhere at all, and will simply 

end up placing 1 at the end of our topological sort. 

 

Next, we will call top_sort_recurse(adj, 2, ts). We will then proceed to make that same 

call on vertex 3. Here we get stuck, and will then place vertex 3 at the end of the 

remaining slots: 

 

           3        1 

       1                2                3                4                  5                6 

 

Now, we backtrack to vertex 2, and see that we have another node adjacent to it, node 5. 

Here we get stuck and place that right before node 3: 

         5        3        1 

       1                2                3                4                  5                6 

 

Finally, we get back to node 2 with no more adjacent nodes, so it goes in our list: 

        2       5        3        1 

       1                2                3                4                  5                6 

 

Node 4 is the next unvisited node, so we call top_sort_recurse(adj, 4, ts). There's nothing 

it's adjacent to that we haven't seen, so it gets placed in index 2. Naturally, it follows that 

6 will get placed in index 1. 

 

       6       4       2       5        3        1 

       1                2                3                4                  5                6 

 

So, here's one way we can dress ourselves: 

1. Undergarments 2. Socks 3. Slacks 4. Belt 5. Shoes 6. Shirt 

 

Okay, so it's a bit odd, but it'll work!!! Notice that we could get different answers if we 

simply renumbered the nodes in a different order which would affect the order in which 

we visit nodes from the non-recursive function. 



Topological Sort – Iterative Version 

 

Just as there is always a vertex in a directed acyclic graph (DAG) that has no outgoing 

edges, there must ALSO be a vertex in a DAG that has no incoming edges. This vertex 

corresponds to one that is safe to put in the front of the topological sort, since it has no 

prerequisites. 

 

Thus, the algorithm is as follows for a graph, G, with n vertices: 

 

1. Initialize TOP to be an empty list 

 

2. While TOP has fewer than n items: 

 

 a. Find a vertex v that is not in TOP that has an in degree of 0. 

 b. Add v to TOP. 

 c. Remove all edges in G from v. 

 

 

In implementing the algorithm, store separately, the in degrees of each vertex. Every time 

you remove an edge in step 2c, update the corresponding in degree count.  

 

For a sparse graph, in order to implement step a, use a Priority Queue. Keep in mind that 

every time you change an in-degree of a vertex, you have to delete the item from the 

priority queue and re-insert it. 

 

Let’s apply this algorithm to our class constraints: 

 

COP 3223 must be taken before COP 3330 and COP 3502. 

COP 3330 must be taken before COP 3503. 

COP 3502 must be taken before COT 3960, COP 3503, CDA 3103. 

COT 3100 must be taken before COT 3960. 

COT 3960 must be taken before COP 3402 and COT 4210. 

COP 3503 must be taken before COT 4210. 

 

 

COP 3223 goes first, since it has no pre-requisites. 

COP 3502 goes next, since it has no pre-requisites left. 

COP 3330 goes next, since it has no pre-requisites left. 

COT 3100 goes next, since it has no pre-requisites left. 

COP 3503 goes next, since it has no pre-requisites left. 

COT 3960 goes next, since it has no prerequisites left. 

COP 3402 goes next, followed by 

COT 4210. 

 

  

 



 Dijkstra's Algorithm 

 

This algorithm finds the shortest path from a source vertex to all other vertices in a 

weighted directed graph without negative edge weights. 

 

Here is the algorithm for a graph G with vertices V = {v1, ... vn} and edge weights wij for 

an edge connecting vertex vi with vertex vj. Let the source be v1. 

 

Initialize a set S = .  This set will keep track of all vertices that we have already 

computed the shortest distance to from the source. 

 

Initialize an array D of estimates of shortest distances. D[1] = 0, while D[i] = , for all 

other i. (This says that our estimate from v1 to v1 is 0, and all of our other estimates from 

v1 are infinity.) 

 

While S !=  V do the following: 

  1) Find the vertex (not is S) that corresponds to the minimal estimate of shortest  

                distances in array D. Use a priority queue to speed up this step. 

 2) Add this vertex, vi into S. 

 3) Recompute all estimates based on edges emanating  

       from v. In particular, for each edge from v, compute 

      D[i]+wij. If this quantity is less than D[j], then set 

      D[j] = D[i]+wij.  

 

Essentially, what the algorithm is doing is this: 

 

Imagine that you want to figure out the shortest route from the source to all other 

vertices. Since there are no negative edge weights, we know that the shortest edge from 

the source to another vertex must be a shortest path. (Any other path to the same vertex 

must go through another, but that edge would be more costly than the original edge based 

on how it was chosen.) 

 

Now, for each iteration, we try to see if going through that new vertex can improve our 

distance estimates. We know that all shortest paths contain subpaths that are also shortest 

paths. (Try to convince yourself of this.) Thus, if a path is to be a shortest path, it must 

build off another shortest path. That's essentially what we are doing through each 

iteration, is building another shortest path. When we add in a vertex, we know the cost of 

the path from the source to that vertex. Adding that to an edge from that vertex to 

another, we get a new estimate for the weight of a path from the source to the new vertex.   

 

This algorithm is greedy because we assume we have a shortest distance to a vertex 

before we ever examine all the edges that even lead into that vertex. In general, this 

works because we assume no negative edge weights. The formal proof is a bit drawn out, 

but the intuition behind it is as follows: If the shortest edge from the source to any vertex 

is weight w, then any other path to that vertex must go somewhere else, incurring a cost 



greater than w. But, from that point, there's no way to get a path from that point with a 

smaller cost, because any edges added to the path must be non-negative. 

 

By the end, we will have determined all the shortest paths, since we have added a new 

vertex into our set for each iteration. 

 

This algorithm is easiest to follow in a tabular format. The adjacency matrix of an 

example graph is included below. Let a be the source vertex. 

 

a b c d e 

a 0 10  inf inf 3 

b inf 0 8 2 inf 

c 2 3 0 4 inf 

d 5  inf 4 0 inf 

e inf 12 16 13 0 

 

Here is the algorithm: 

Estimates  b c d e 

Add to Set 

a     10  inf inf 3 

e     10 19 16 3 

b     10 18 12 3 

d     10 16 12 3 

 

We changed the estimates to c and d to 19 and 16 respectively since these were 

improvements on prior estimates, using the edges from e to c and e to d. But, we did 

NOT change the 10 because 3+12, (the edge length from e to b) gives us a path length of 

15, which is more than the current estimate of 10. Using edges bc and bd, we improve the 

estimates to both c and d again. Finally using edge dc we improve the estimate to c. 

 

Now, we will prove why the algorithm works. We will use proof by contradiction. After 

each iteration of the algorithm, we "declare" that we have found one more shortest path. 

We will assume that one of these that we have found is NOT a shortest path.  

 

Let t be the first vertex that gets incorrectly placed in the set S. This means that there is a 

shorter path to t than the estimate produced when t is added into S. Since we have 

considered all edges from the set S into vertex t, it follows that if a shorter path exists, its 

last edge must emanate from a vertex outside of S to t. But, all the estimates to the edges 

outside of S are greater than the estimate to t. None of these will be improved by any 

edge emanating from a vertex in S (except t), since these have already been tried. Thus, 

it's impossible for ANY of these estimates to ever become better than the estimate to t, 

since there are no negative edge weights. With that in mind, since each edge leading to t 

is non-negative, going through any vertex not in S to t would not decrease the estimate of 

its distance. Thus, we have contradicted the fact that a shorter path to t could be found. 

Thus, when the algorithm terminates with all vertices in the set S, all estimates are 

correct. 



Bellman- Ford Algorithm 

 

This algorithm finds shortest distances from a source vertex for directed graphs with or 

without negative edge weights. This algorithm works very similar to Dijkstra's in that it 

uses the same idea of improving estimates (also known as edge relaxation), but it doesn't 

use the greedy strategy that Dijkstra's uses. (The greedy strategy that Dijkstra's uses is 

assuming that a particular distance is optimal without looking at the rest of the graph. 

This can be done in that algorithm because of the assumption of no negative edge 

weights.) 

 

The basic idea of relaxation is as follows: 

 

1) Maintain estimates for distances of each vertex. 

 

2) Improve these estimates by considering particular edges. Namely, if your estimate to 

vertex b is 5, and edge bd has a weight of 3, but your current estimate to vertex d is 

greater than 8, improve it! 

 

Using this idea, here is Bellman-Ford's algorithm: 

 

1) Initialize all estimates to non-source vertices to infinity. 

     Denote the estimate to vertex u as D[u], and the weight of an 

     edge (u,v) as w(u,v). 

 

2) Repeat the following |V| - 1 times: 

 

 a) For each edge (u,v) 

  if D[u]+w(u,v) < D[v] 

   D[v] = D[u] + w(u,v) 

 

 

The cool thing is that it doesn't matter what order you go through each edge in the graph 

in the inner for loop in step 2. You just have to go through each edge exactly once. 

 

This algorithm is useful when the graph is sparse, has negative edge weights and you 

only need distances from one vertex. 

 



Let's trace through an example. Here is the adjacency matrix of a graph, using a as the 

source: 

 

a b c d e 

a 0 6  inf inf 7 

b inf 0 5 -4 8 

c inf -2 0 inf inf 

d 2  inf 7 0 inf 

e inf inf -3 9 0 

 

Estimates  a b c d e 

Edge  

none     0 inf  inf inf inf 

ab, ae    0 6 inf inf 7 

bc, bd, be, ec, ed  0 6 4 2 7 

all, with cb   0 2 4 2 7 

all, with bd   0 2 4 -2 7 

 

The proof for the correctness of this algorithm lies in the fact that after each ith iterartion 

each estimate is the shortest path using at most i edges. This is certainly true after the first 

iteration. Now, assume it is true for the ith iteration. Under this assumption, we must 

prove it is true for the i+1th iteration. Notice that either the shortest path using at most i+1 

edges uses at most i edges OR, is a shortest path of i edges with one more edge tacked on. 

This is because all shortest paths contain shortest paths. BUT, the way the algorithm 

works, ALL shortest paths of length i are considered, along with all edges added to them. 

Thus, the algorithm MUST come up with the optimal path using at most i+1 edges. 

 



Longest Path in a DAG 

 

Since a DAG doesn’t have cycles, there are well-defined longest paths in DAGs. We can 

use Bellman-Ford’s algorithm to find the longest path in a DAG from a chosen source 

vertex. Basically, just negate all the edge weights. Now, the negative of the minimum cost 

for a path in this adjusted graph is the same as the maximum cost path in the original 

graph! 

 

Another way to solve this problem would be to use memoization. Recursively, a solution 

looks like this, assuming that a path always existed: 

 
int longpath(ArrayList[] graph, int source, int end) { 

 

    if (memo[source] != -1) return memo[source]; 

    if (source == end) return 0; 

 

    int best = Integer.MIN_VALUE; 

 

    for (int i=0; i<graph[source].size(); i++) { 

 

        int cur = graph[source].get(i).weight + 

         longpath(graph, graph[source].get(i).vertex, end); 

 

       best = Math.max(best, cur); 

    } 

 

    memo[source] = best; 

    return best; 

} 

 

Each array list must be an array list of objects that have the instance variables weight and 

vertex that store those corresponding items for that connection from the source variable 

and the memo array has to be declared as a static class variable. 

 

In essence, the code just says, “Try all paths that lead from source. The longest these 

paths could be is the sum of the edge from source to the next vertex, plus the longest path 

from that next vertex to our end vertex. Of all of these, take the longest!” 


