
Programming Team Lecture: Dynamic Programming 

 

Standard Algorithms to Know 

Computing Binomial Coefficients (Brassard 8.1) 

World Series Problem (Brassard 8.1) 

Making Change (Brassard 8.2) 

Knapsack (Brassard 8.4 Goodrich 5.3) 

Subset Sum (special instance of knapsack where weights=values) 

Floyd-Warshall's (Brassard 8.5 Cormen 26.2) 

Chained Matrix Multiplication (Brassard 8.6, Cormen 16.1 Goodrich 5.3) 

Longest Common Subsequence (Cormen 16.3) 

Edit Distance (Skiena 11.2) 

Polygon Triangulation (Cormen 16.4) 

 

 

Example #1: Testing the Catcher 

If you read this carefully, this problem is really a longest non-increasing sequence 

problem. 

 

The recursive solution is as follows: 

 

For the first value in the list, we have two options: (a) take it, (b) don't take it 

 

Work out which of these two options is better and return the maximum of the two 

strategies. 

 

Our recursive function takes in four parameters: 

 

1) The whole list 

2) The size of the list 

3) The index of the current value we are considering 

4) The height of the last missile taken previous to the current. 

 

One thing to note is that sometimes, the current missile can not be intercepted. This is 

precisely when its height is greater than the height of the previous missle intercepted. 

 

Initially, the last parameter is set to a value greater than the height of any missile. 

 

In the code, if it's possible to intercept the current missile, then take the maximum of: 

 

1) 1 + maximum number of missiles that can be intercepted from the rest of the list such 

that the maximum height is that of the current missile. 

 

2) the maximum number of missiles that can be intercepted from the rest of the list such 

that the maximum height is that of the previous missile taken. 

 



Now, the question is, how can we turn this into DP? 

 

For each sublist starting from the beginning, perhaps we could store the maximum 

number of missiles that can be intercepted from that sublist. Thus, for the list: 

 

       0   1        2    3         4     5           6              7 

80 70 60 50 65 45 60 61 

 

We could store (in an auxiliary array) the values: 

 

 

       0   1        2    3         4     5           6              7 

1 2 3 4 4 5 5 5 

 

The key to DP is being able to construct this table just using previously filled in values to 

the table. The problem here is just because we know that the longest list using the first 7 

elements (in indexes 0 through 5) is 5, doesn't mean we can decide whether or not we can 

do better using the last element, 35. In fact, the information we need is what was the 

height of the last missile in the list of four intercepted missiles. If this is greater than or 

equal to 61, then we can add 61 to the list, otherwise we can't. 

 

So, we have two options:  

 

1) Store the last missile height the corresponds to each of the longest sequences 

2) Stipulate that the entry in the array corresponds to the longest sequence of missiles that 

can be intercepted with the LAST missile being intercepted. 

 

It turns out that the characterization for choice 2 works quite well. Here is the adjusted 

auxiliary array if we choose to store this information: 

 

 

       0   1        2    3         4     5           6              7 

1 2 3 4 3 5 4 3 

 

To finish up the problem, we simply find the maximum value stored in this auxiliary 

array. 

 

Now, how do we construct this auxiliary array? 

 

We will fill in each value one by one, in order. 

 

When we fill in the kth element, we must ask ourselves the following question: 

 

Assuming that the last missile intercepted was any of the previous, which of these 

previous interceptions leads to the maximum number of missile interceptions that end 

with this current missile? 



Here's an example: 

 

Consider filling out the last element in the auxiliary array for the example above. 

 

For each previous missile that is at a height greater than or equal to 61, we must find the 

one that gives us the maximum number of intercepted missiles. 

 

 

       0   1        2    3         4     5           6              7 

80 70 60 50 65 45 60 61 

 

 

       0   1        2    3         4     5           6              7 

1 2 3 4 3 5 4 3 

 

We will loop through the array of missile heights, checking to see if those missiles are at 

height 61 or higher. There are only two. For these two missiles, we check the 

corresponding entry in the auxiliary array. We see that if 80 is the last missile we take, 

then by taking 61, we have taken 2 missiles. But then we see that if we take 70 as our last 

missile, by taking 61 afterwards, we have taken 3 missiles. This is better than 2, so we 

store 3 in the auxiliary array. 

 

Example #2: Edit Distance 

The problem of finding an edit distance between two strings is as follows: 

 

Given an initial string s, and a target string t, what is the minimum number of chances 

that have to be applied to s to turn it into t. The list of valid changes are: 

 

1) Inserting a character 

2) Deleting a character 

3) Changing a character to another character. 

 

In initially looking for a recursive solution, you may think that there are simply too many 

recursive cases. We could insert a character in quite a few locations! (If the string is 

length n, then we can insert a character in n+1 locations.) However, the key observation 

that leads to a recursive solution to the problem is that ultimately, the last characters will 

have to match. So, when matching one word to another, on consider the last characters of 

strings s and t. If we are lucky enough that they ALREADY match, then we can simply 

"cancel" and recursively find the edit distance between the two strings left when we 

delete this character from both strings. Otherwise, we MUST make one of three changes: 

 

1) delete the last character of string s 

2) delete the last character of string t 

3) change the last character of string s to the last character of string t. 

 



Also, in our recursive solution, we must note that the edit distance between the empty 

string and another string is the length of the second string. (This corresponds to having to 

insert each letter for the transformation.) 

 

So, an outline of our recursive solution is as follows: 

 

1) If either string is empty, return the length of the other string. 

2) If the last characters of both strings match, recursively find the edit distance between 

each of the strings without that last character. 

3) If they don't match then return 1 + minimum value of the following three choices: 

 

 a) Recursive call with the string s w/o its last character and the string t 

 b) Recursive call with the string s and the string t w/o its last character 

 c) Recursive call with the string s w/o its last character and the string t w/o its last 

     character. 

 

Now, how do we use this to create a DP solution? We simply need to store the answers to 

all the possible recursive calls. In particular, all the possible recursive calls we are 

interested in are determining the edit distance between prefixes of s and t. 

 

Consider the following example with s="hello" and t="keep". To deal with empty strings, 

an extra row and column have been added to the chart below: 

 

  h e  l l o 

 0 1 2 3 4 5 

k 1 1 2 3 4 5 

e 2 2 1 2 3 4 

e 3 3 2 2 3 4 

p 4 4 3 3 3 4 

 

 

An entry in this table simply holds the edit distance between two prefixes of the two 

strings. For example, the highlighted square indicates that the edit distance between the 

strings "he" and "keep" is 3. In order to fill in all the values in this table we will do the 

following: 

 

1) Initialize values corresponding to the base case in the recursive solution. These are all 

the values dealing with edit distances with the empty string. (They are the first row and 

first column inside the table.) 

 

2) Loop through the table from the top left to the bottom right. In doing so, simply follow 

the recursive solution. 

 

If the characters you are looking at match, store the number in the square diagonally up 

and left from the square you are filling in. This square holds the edit distance between the 

two strings w/o their last character. 



If the characters don't match, look that the square to your left, above you, and the square 

diagonally up and left of the one you are filling in. Take the minimum of these and add 1. 

This corresponds exactly to the recursive call, except that instead of making it, you just 

look it up in the table. 

 

Finally we can reconstruct the path as follows: 

 

  h e  l l o 

 0 1 2 3 4 5 

k 1 1 2 3 4 5 

e 2 2 1 2 3 4 

e 3 3 2 2 3 4 

p 4 4 3 3 3 4 

 

Start at the bottom right corner of the auxiliary array. Compare the corresponding 

characters. If they match, automatically go up the diagonal and do not edit anything. If 

they don't match, as in the case of 'o' and 'p', the look at the three squares we mentioned 

before: up, left, and up&left. If any of these is one less than the current square value, go 

to that square. (I chose one of the two possible choices.) Then make the edit that 

corresponds to this choice. For the choice above, that means deleting the o: 

 

hello -> hell 

 

From here on, the edit path dictated is hello->hell->help->heep->keep. 

 

Here is pseudocode for the algorithm: 

 
int strmatchdyn(String s, String t) { 

 

  int table[s.length()+1][t.length()+1], i, j; 

 

  // Initial edit distances (base cases). 

  for (i=0; i< s.length()+1; i++) table[i][0] = i; 

  for (i=0; i< t.length()++1; i++) table[0][i] = i; 

 

  // Go through whole table. 

  for (i=1; i<s.length()+1; i++) 

    for (j=1; j<t.lengeth()+1; j++) 

 

      // Check if the current characters match. 

      if (s[i-1]==t[j-1]) 

        table[i][j] = table[i-1][j-1]; 

 

      // Otherwise take the minimum of the 3 cases. 

      else 

        table[i][j] = 1+min(table[i-1][j-1], 

                            table[i-1][j]  ,table[i][j-1]); 

 

  return table[slen][tlen]; 

} 



Example #3: 0-1 Knapsack Problem 

The problem is as follows: your goal is to maximize the value of a knapsack that can hold 

at most W units worth of goods from a list of items I0,  I1,  ... In-1. Each item has two 

attributes: 

 

1) Value - let this be vi for item Ii. 

2) Weight - let this be wi for item Ii. 

 

Now, instead of being able to take a certain weight of an item, you can only either take 

the item or not take the item. 

 

The naive way to solve this problem is to cycle through all 2n subsets of the n items and 

pick the subset with a legal weight that maximizes the value of the knapsack. But, we can 

find a dynamic programming algorithm that will USUALLY do better than this brute 

force technique. 

 

Our first attempt might be to characterize a sub-problem as follows: 

 

Let Sk be the optimal subset of elements from {I0, I1,... Ik}. But what we find is that the 

optimal subset from the elements {I0, I1,... Ik+1} may not correspond to the optimal subset 

of elements from {I0, I1,... Ik} in any regular pattern. Basically, the solution to the 

optimization problem for Sk+1 might NOT contain the optimal solution from problem Sk. 

 

 

To illustrate this, consider the following example: 

 

Item  Weight  Value 

I0  3  10 

I1  8  4 

I2  9  9 

I3  8  11 

 

The maximum weight the knapsack can hold is 20. 

 

The best set of items from {I0, I1, I2} is {I0, I1, I2}  but the best set of items from {I0, I1, I2, 

I3}  is {I0, I2, I3}. In this example, note that this optimal solution, {I0, I2, I3}, does NOT 

build upon the previous optimal solution, {I0, I1, I2}. (Instead it build's upon the solution, 

{I0, I2}, which is really the optimal subset of   {I0, I1, I2} with weight 12 or less.) 

 

So, now, we must rework our example. In particular, after trial and error we may come up 

with the following idea: 

 

Let B[k, w] represent the maximum total value of a subset Sk with weight w. Our goal is 

to find B[n, W], where n is the total number of items and W is the maximal weight the 

knapsack can carry. 

 



Using this definition, we have B[0, w] = v0, if w >= w0. 

               = 0, otherwise 

 

Now, we can derive the following relationship that B[k, w] obeys: 

 

B[k, w] = B[k - 1,w], if wk > w 

  = max { B[k - 1,w], B[k - 1,w - wk] + vk} 

 

In English, here is what this is saying: 

 

1) The maximum value of a knapsack with a subset of items from {I0, I1, ... Ik} with 

weight w is the same as the maximum value of a knapsack with a subset of items from 

{I0, I1, ... Ik-1} with weight w, if item k weighs greater than w.  

 

Basically, you can NOT increase the value of your knapsack with weight w if the new 

item you are considering weighs more than w – because it WON'T fit!!! 

 

2) The maximum value of a knapsack with a subset of items from {I0, I1, ... Ik} with 

weight w could be the same as the maximum value of a knapsack with a subset of items 

from {I1, I2, ... Ik-1} with weight w, if item k should not be added into the knapsack. 

 

OR 

 

3) The maximum value of a knapsack with a subset of items from {I0, I1, ... Ik} with 

weight w could be the same as the maximum value of a knapsack with a subset of items 

from {I0, I1, ... Ik-1} with weight w-wk, plus item k.  

 

You need to compare the values of knapsacks in both case 2 and 3 and take the maximal 

one. 

 

Recursively, we will STILL have an O(2n) algorithm. But, using dynamic programming, 

we simply have to do a double loop - one loop running n times and the other loop running 

W times. 

 

Question: In which cases would a running time of O(nW) be worse than a running time of 

O(2n)? 

Here is a dynamic programming algorithm to solve the 0-1 Knapsack problem: 

 

Input: S, a set of n items as described earlier, W the total weight of the knapsack. 

(Assume that the weights and values are stored in separate arrays named w and v, 

respectively.) 

 

Output: The maximal value of items in a valid knapsack. 

 

 

 



int w, k; 

for (w=0; w <= W; w++) 

     B[w] = 0 

 

for (k=0; k<n; k++)  

     for (w = W; w>= w[k]; w--)   

 

          if (B[w – w[k]] + v[k] > B[w]) 

          B[w] = B[w – w[k]] + v[k]  

      

Note on run time: Clearly the run time of this algorithm is O(nW), based on the nested 

loop structure and the simple operation inside of both loops. When comparing this with 

the previous O(2n), we find that depending on W, either the dynamic programming 

algorithm is more efficient or the brute force algorithm could be more efficient. (For 

example, for n=5, W=100000, brute force is preferable, but for n=30 and W=1000, the 

dynamic programming solution is preferable.) 

 

Once again, note that the inner loop MUST run backwards, otherwise we allow ourselves 

to take more than one copy of an item. 

 

Let's run through an example: 

 

i Item wi vi 

0 I0 4 6 

1 I1 2 4 

2 I2 3 5 

3 I3 1 3 

4 I4 6 9 

5 I5 4 7 

 

W = 10 

 

Item 0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 6 6 6 6 6 6 6 

1 0 0 4 4 6 6 10 10 10 10 10 

2 0 0 4 5 6 9 10 11 11 15 15 

3 0 3 4 7 8 9 12 13 14 15 18 

4 0 3 4 7 8 9 12 13 14 16 18 

5 0 3 4 7 8 10 12 14 15 16 19 

 

If the problem changes and we DO allow as many copies of a particular item, then all 

we need to do to edit the code is run the inner loop forwards, which then allows larger 

knapsacks to be built from ones that already have copies of the item being considered. 

 

 

 



Example #4: The Matrix Chain Multiplication Problem 

 

Given a chain of matrices to multiply, determine the how the matrices should be 

parenthesized to minimize the number of single element multiplications involved.  

 

First off, it should be noted that matrix multiplication is associative, but not commutative. 

But since it is associative, we always have: 

 

((AB)(CD)) = (A(B(CD))) 

 

or equality for any such grouping as long as the matrices in the product appear in the 

same order. 

 

It may appear on the surface that the amount of work done won't change if you change 

the parenthesization of the expression, but we can prove that is not the case with the 

following example: 

 

Let A be a 2x10 matrix 

Let B be a 10x50 matrix 

Let C be a 50x20 matrix 

 

Note that any matrix multiplication between a matrix with dimensions ixj and another 

with dimensions jxk will perform ixjxk element multiplications creating an answer that is 

a matrix with dimensions ixk. Also note that the second dimension in the first matrix and 

the first dimension in the second matrix must be equal in order to allow matrix 

multiplication. 

 

Consider computing A(BC): 

 

# multiplications for (BC) = 10x50x20 = 10000, creating a 10x20 answer matrix 

 

# multiplications for A(BC) = 2x10x20 = 400, 

 

Total multiplications = 10000 + 400 = 10400. 

 

Consider computing (AB)C: 

 

# multiplications for (AB) = 2x10x50 = 1000, creating a 2x50 answer matrix 

 

# multiplications for (AB)C = 2x50x20 = 2000, 

 

Total multiplications = 1000 + 2000 = 3000, a significant difference. 

 

Thus, the goal of the problem is given a chain of matrices to multiply, determine the 

fewest number of multiplications necessary to compute the product. We will formally 

define the problem below: 



Let A = A0 A1 ... An-1 

 

Let Ni,j  denote the minimal number of multiplications necessary to find the product Ai 

Ai+1 ... Aj. And let dixdi+1 denote the dimensions of matrix Ai.  

 

We must attempt to determine the minimal number of multiplications necessary(N0,n-1) to 

find A,  assuming that we simply do each single matrix multiplication in the standard 

method.  

 

The key to solving this problem is noticing the sub-problem optimality condition: 

 

If a particular parenthesization of the whole product is optimal, then any sub-

parenthesization in that product is optimal as well. Consider the following illustration: 

 

Assume that we are calculating ABCDEF and that the following parenthesization is 

optimal: 

 

(A  (B ((CD) (EF)) ) ) 

 

Then it is necessarily the case that 

 

(B  ((CD) (EF))  ) 

 

is the optimal parenthesization of BCDEF. 

 

Why is this? 

 

Because if it wasn't, and say ( ((BC) (DE)) F) was better, then it would also follow that 

 

(A ( ((BC) (DE)) F) ) was better than 

 

(A  (B ((CD) (EF)) ) ), contradicting its optimality. 

 

This line of reasoning is nearly identical to the reasoning we used when deriving Floyd-

Warshall's algorithm.  

 

Now, we must make one more KEY observation before we design our algorithm: 

 

Our final multiplication will ALWAYS be of the form 

 

(A0 A1 ... Ak)  (Ak+1 Ak+2 ... An-1) 

 



In essence, there is exactly one value of k for which we should "split" our work into two 

separate cases so that we get an optimal result. Here is a list of the cases to choose from: 

 

(A0)  (A1 Ak+2 ... An-1) 

(A0 A1)  (A2 Ak+2 ... An-1) 

(A0 A1A2)  (A3 Ak+2 ... An-1) 

... 

(A0 A1 ... An-3)  (An-2  An-1) 

(A0 A1 ... An-2)  (An-1) 

 

Basically, count the number of multiplications in each of these choices and pick the 

minimum. One other point to notice is that you have to account for the minimum number 

of multiplications in each of the two products. 

 

Consider the case multiplying these 4 matrices: 

 

A: 2x4 

B: 4x2 

C: 2x3 

D: 3x1 

 

1. (A)(BCD) - This is a 2x4 multiplied by a 4x1,  

      so 2x4x1 = 8 multiplications, plus whatever  

      work it will take to multiply (BCD). 

  

2. (AB)(CD) - This is a 2x2 multiplied by a 2x1, 

        so 2x2x1 = 4 multiplications, plus whatever 

        work it will take to multiply (AB) and (CD). 

 

 

3. (ABC)(D) - This is a 2x3 multiplied by a 3x1, 

        so 2x3x1 = 6 multiplications, plus whatever 

        work it will take to multiply (ABC). 

 

Thus, we can state the following recursive formula: 

 

Ni,j  = min value of Ni,k  + Nk+1,j  + didk+1dj+1, over all 

  valid values of k. 

 

One way we can think about turning this recursive formula into a dynamic programming 

solution is by deciding which sub-problems are necessary to solve first. Clearly it's 

necessary to solve the smaller problems before the larger ones. In particular, we need to 

know Ni,i+1, the number of multiplications to multiply any adjacent pair of matrices 

before we move onto larger tasks. Similarly, the next task we want to solve is finding all 

the values of the form Ni,i+2, then Ni,i+3, etc. So here is our algorithm: 

 



1) Initialize N[i][i] = 0, and all other entries in N to . 

2) for i=1 to n-1 do the following 

 2i) for j=0 to n-1-i do 

  2ii) for k=j to j+i-1 

   2iii) if (N[j][j+i-1] >  

   N[j][k]+N[k+1][j+i-1]+djdk+1di+j) 

 

N[j][j+i-1]= 

         N[j][k]+N[k+1][j+i-1]+djdk+1di+j 

 

Here is the example we worked through in class: 

Matrix Dimensions 

A   2x4 

B  4x2 

C  2x3 

D  3x1 

E  1x4 

 

 A B C D E 

A 0 16 28 22 30 

B  0 24 14 30 

C   0 6 14 

D    0 12 

E     0 

 

First we determine the number of multiplications necessary for 2 matrices: 

 

AxB uses 2x4x2 = 16 multiplications 

BxC uses 4x2x3 = 24 multiplications 

CxD uses 2x3x1 = 6 multiplications 

DxE uses 3x1x4 = 12 multiplications 

 

Now, let's determine the number of multiplications necessary for 3 matrices 

 

(AxB)xC uses 16 + 0 + 2x2x3 = 28 multiplications 

Ax(BxC) uses 0 + 24 + 2x4x3 = 48 multiplications, so 28 is min. 

 

(BxC)xD uses 24 + 0 + 4x3x1 = 36 multiplications 

Bx(CxD) uses 0 + 6 + 4x2x1 = 14 multiplications, is 14 is min. 

 

(CxD)xE uses 6 + 0 + 2x1x4 = 14 multiplications 

Cx(DxE) uses 0 + 12 + 2x3x4 = 36, so 14 is min. 

 

 



Four matrices next: 

 

Ax(BxCxD) uses 0 + 14 + 2x4x1 = 22 multiplications 

(AxB)x(CxD) uses 16 + 6 + 2x2x1 = 26 multiplications 

(AxBxC)xD uses 28 + 0 + 2x3x1 = 34 multiplications, 22 is min. 

 

 

Bx(CxDxE) uses 0 + 14 + 4x2x4 = 46 multiplications 

(BxC)x(DxE) uses 24 + 12 + 4x3x4 = 84 multiplications 

(BxCxD)xE uses 14 + 0 + 4x1x4 = 30 multiplications, 30 is min. 

 

For the answer: 

 

Ax(BxCxDxE) uses 0 + 30 + 2x4x4 = 62 multiplications 

(AxB)x(CxDxE) uses 16 + 14 + 2x2x4 = 46 multiplications 

(AxBxC)x(DxE) uses 28 + 12 + 2x3x4 = 64 multiplications 

(AxBxCxD)xE uses 22 + 0 + 2x1x4 = 30 multiplications 

 

Answer = 30 multiplications 

 

 

 

Homework Problems from acm.uva.es site 

10131, 10069, 10154, 116, 10003, 10261, 10271, 10201 

 

The team should attempt to complete these collectively. I will email one more problem to 

the three team members that all of them should do. 
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