
Programming Team Lecture: Dynamic Programming 

 

Standard Algorithms to Know 

Computing Binomial Coefficients (Brassard 8.1) 

World Series Problem (Brassard 8.1) 

Making Change (Brassard 8.2) 

Knapsack (Brassard 8.4 Goodrich 5.3) 

Subset Sum (special instance of knapsack where weights=values) 

Floyd-Warshall's (Brassard 8.5 Cormen 26.2) 

Chained Matrix Multiplication (Brassard 8.6, Cormen 16.1 Goodrich 5.3) 

Longest Common Subsequence (Cormen 16.3) 

Edit Distance (Skiena 11.2) 

Polygon Triangulation (Cormen 16.4) 

 

Example #1: Fibonacci Numbers 

We have looked at several algorithms that involve recursion. In some situations, these 

algorithms solve fairly difficult problems efficiently, but in other cases they are 

inefficient because they recalculate certain function values many times. The example 

given in the text is the fibonacci example. Recursively we have: 

 

public static int fibrec(int n) { 

 

 if (n < 2) 

  return n; 

 else 

  return fibrec(n-1)+fibrec(n-2); 

} 

 

The problem here is that lots and lots of calls to Fib(1) and Fib(0) are made. It would be 

nice if we only made those method calls once, then simply used those values as 

necessary. 

In fact, if I asked you to compute the 10th Fibonacci number, you would never do it using 

the recursive steps above. Instead, you'd start making a chart: 

 

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, F10 = 55. 

 

First you calculate F3 by adding F1 and F2, then F4, by adding F3 and F4, etc. 

 

The idea of dynamic programming is to avoid making redundant method calls. Instead, 

one should store the answers to all necessary method calls in memory and simply look 

these up as necessary. 

 



Using this idea, we can code up a dynamic programming solution to the Fibonacci 

number question that is far more efficient than the recursive version: 

 
public static int fib(int n) { 

 

 int[] fibnumbers = new int[n+1]; 

 fibnumbers[0] = 0; 

 fibnumbers[1] = 1; 

 

 for (int i=2; i<n+1;i++) 

  fibnumbers[i] = fibnumbers[i-1]+fibnumbers[i-2]; 

 

 return fibnumbers[n]; 

} 

 

The only requirement this program has that the recursive one doesn't is the space 

requirement of an entire array of values. (But, if you think about it carefully, at a 

particular moment in time while the recursive program is running, it has at least n 

recursive calls in the middle of execution all at once. The amount of memory necessary to 

simultaneously keep track of each of these is in fact at least as much as the memory the 

array we are using above needs.) 

 

Usually however, a dynamic programming algorithm presents a time-space trade off. 

More space is used to store values, but less time is spent because these values can be 

looked up. 

 

Can we do even better (with respect to memory) with our Fibonacci method above? What 

numbers do we really have to keep track of all the time? 

 
public static int fib(int n) { 

 int fibfirst = 0; 

 int fibsecond = 1; 

 

 for (int i=2; i<n+1;i++) { 

  fibsecond = fibfirst+fibsecond; 

  fibfirst = fibsecond - fibfirst; 

  } 

 return fibsecond; 

} 

 

So here, we calculate the nth Fibonacci number in linear time (assuming that the 

additions are constant time, which is actually not a great assumption) and use very little 

extra storage. 

 

To see an illustration of the difference in speed, I wrote a short main to test this 

public static void main(String[] args) { 

 



    long start = System.currentTimeMillis(); 

    System.out.println("Fib 30 = "+fib(30)); 

    long mid = System.currentTimeMillis(); 

    System.out.println("Fib 30 = "+fibrec(30)); 

    long end = System.currentTimeMillis(); 

   

    System.out.println("Fib Iter Time = "+(mid-start)); 

    System.out.println("Fib Rec Time = "+(end-mid)); 

  } 

// Output: 

// Fib Iter Time = 4 

// Fib Rec Time = 258 

 
 

Example #2: Binomial Coefficients 

There is a direct formula for calculating binomial coefficients, it's 
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However, it's instructive to calculate binomial coefficients using dynamic programming 

since the technique can be used to calculate answers to counting questions that don't have 

a simple closed-form formula. 

 

The recursive formula for binomial coefficients is 
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In code, this would look roughly like this: 

 
int combo(int n, int k) { 

  if (n == 0 || n == k) 

    return 1; 

  else 

    return combo(n-1,k-1)+combo(n-1,k); 

} 

 

However, this ends up repeating many instances of recursive calls, and ends up being 

very slow. We can implement a dynamic programming solution by creating a two 

dimensional array which stores all the values in Pascal's triangle. When we need to make 

a recursive call, instead, we can simply look up the answer in the array. To turn a 

recursive solution into a DP one, here's what has to be done: 

 

a) Characterize all possible input values to the function and create an array to store the 

answer to each possible problem instance that is necessary to solve the problem at hand. 



b) Seed the array with the initial values based on the base cases in the recursive solution. 

 

c) Fill in the array (in an order so that you are always looking up array slots that are 

already filled) using the recursive formula, but instead of making a recursive call, look up 

that value in the array where it should be stored. 

 

In pseudocode, here's how binomial combinations can be computed using dynamic 

programming: 

 
int combo(int n, int k) { 

 

  int pascaltri[][] = new int[n+1][n+1]; 

  for (int i=0; i<n+1; i++) { 

    pascaltri[i][0] = 1; 

    pascaltri[i][i] = 1; 

  } 

 

  for (int i=2; i<n+1; i++)  

    for (int j=1; j<i; j++) 

      pascaltri[i][j] = pascaltri[i-1][j-1] + 

                        pascaltri[i-1][j]; 

 

  return pascaltri[n][k]; 

} 

 

The key idea here is that pascaltri[i][j] always stores 
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increasing order, by the time we look up values in the array, they are already there. 

Basically, what we are doing, is building up the answers to subproblems from small to 

large and then using the smaller answers as needed. 

 

Example #3: Making Change 

"The Change Store" was an old SNL skit (a pretty dumb one...) where they would say 

things like, "You need change for a 20? We'll give you two tens, or a ten and two fives, 

or four fives, etc." 

 

If you are a dorky minded CS 2 student, you might ask yourself (after you ask yourself 

why those writers get paid so much for writing the crap that they do), "Given a certain 

amount of money, how many different ways are there to make change for that amount of 

money?" 

 

Let us simplify the problem as follows: 

 

Given a positive integer n, how many ways can we make change for n cents using 

pennies, nickels, dimes and quarters? 

 



Recursively, we could break down the problem as follows: 

 

To make change for n cents we could: 

1) Give the customer a quarter. Then we have to make change for n-25 cents 

2) Give the customer a dime. Then we have to make change for n-10 cents 

3) Give the customer a nickel. Then we have to make change for n-5 cents 

4) Give the customer a penny. Then we have to make change for n-1 cents. 

 

If we let T(n) = number of ways to make change for n cents, we get the formula 

 

T(n) = T(n-25)+T(n-10)+T(n-5)+T(n-1) 

Is there anything wrong with this? 

 

If you plug in the initial condition T(1) = 1, T(0)=1, T(n)=0 if n<0, you'll find that the 

values this formula produces are incorrect. (In particular, for this recurrence relation 

T(6)=3, but in actuality, we want T(6)=2.) 

 

So this can not be right. What is wrong with our logic? In particular, it can been seen that 

this formula is an OVERESTIMATE of the actual value. Specifically, this counts certain 

combinations multiple times. In the above example, the one penny, one nickel 

combination is counted twice. Why is this the case? 

The problem is that we are counting all combinations of coins that can be given out 

where ORDER matters. (We are counting giving a penny then a nickel separately from 

giving a nickel and then a penny.) 

 

We have to find a way to NOT do this. One way to do this is IMPOSE an order on the 

way the coins are given. We could do this by saying that coins must be given from most 

value to least value. Thus, if you "gave" a nickel, afterwards, you would only be allowed 

to give nickels and pennies. 

 

Using this idea, we need to adjust the format of our recursive computation: 

 

To make change for n cents using the largest coin d, we could 

 

1)If d is 25, give out a quarter and make change for n-25 cents using the largest coin as a 

quarter. 

2)If d is 10, give out a dime and make change for n-10 cents using the largest coin as a 

dime. 

3)If d is 5, give out a nickel and make change for n-5 cents using the largest coin as a 

nickel. 

4)If d is 1, we can simply return 1 since if you are only allowed to give pennies, you can 

only make change in one way. 

 

Although this seems quite a bit more complex than before, the code itself isn't so long. 

Let's take a look at it: 

 



public static int makeChange(int n, int d) { 

 

    if (n < 0) 

        return 0; 

    else if (n==0) 

        return 1; 

    else  { 

        int sum = 0; 

        switch (d) { 

            case 25: sum+=makeChange(n-25,25); 

    case 10: sum+=makeChange(n-10,10); 

            case 5: sum += makeChange(n-5,5); 

            case 1: sum++; 

         } 

         return sum; 

     } 

} 

 

There's a whole bunch of stuff going on here, but one of the things you'll notice is that the 

larger n gets, the slower and slower this will run, or maybe your computer will run out of 

stack space.  Further analysis will show that many, many method calls get repeated in the 

course of a single initial method call. 

 

In dynamic programming, we want to AVOID these reoccuring calls. To do this, rather 

than making those three recursive calls above, we could store the values of each of those 

in a two dimensional array.  

 

Our array could look like this 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 

10 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

25 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

 

 

Essentially, each row label stands for the number of cents we are making change for and 

each column label stands for the largest coin value allowed to make change. 

 

(Note: The lightly colored squares with 1, 2 and 1 are added to calculate the lightly 

colored square with 4, based on the recursive algorithm.) 

 



Now, let us try to write some code that would emulate building this table by hand, from 

left to right. 

 
  public static int makeChangedyn(int n, int d) { 

 

      // Take care of simple cases. 

      if (n < 0) 

          return 0; 

      else if ((n>=0) && (n < 5)) 

          return 1; 

     

       // Build table here. 

       else { 

 

            int[] denominations = {1, 5, 10, 25}; 

            int[][] table = new int[4][n+1]; 

     

            // Initialize table 

            for (int i=0; i<n+1;i++) 

                table[0][i] = 1; 

            for (int i=0; i<5; i++) { 

                table[1][i] = 1; 

                table[2][i] = 1; 

                table[3][i] = 1; 

            } 

            for (int i=5;i<n+1;i++) { 

                table[1][i] = 0; 

                table[2][i] = 0; 

                table[3][i] = 0; 

            } 

 

           // Fill in table, row by row.  

           for (int i=1; i<4; i++) { 

                for (int j=5; j<n+1; j++) { 

                    for (int k=0; k<=i; k++) { 

                        if ( j >= denominations[k]) 

                             table[i][j] += table[k][j - 

denominations[k]]; 

                    }  

                } 

            }         

            return table[lookup(d)][n];  

       } 

  } 

 



An alternate way to code this up is to realize that we DON'T need to add many different 

cases up together. Instead, we note that the number of ways to make change for n cents 

using denomination d can be split up into counting two groups: 

 

1) The number of ways to make change for n cents using denominations LESS than d 

 

2) The number of ways to make change for n cents using at least ONE coin of 

denomination d. 

 

The former is simply the value in the table that is directly above the one we are trying to 

fill. 

 

The latter is the value on the table that is on the same row, by d spots to the left. 

 

Visually, consider just adding two values from our previous example: 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

5 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 

10 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

25 1 1 1 1 2 2 2 2 2 4 4 4 4 4 6 

 

(Also note that the lightly colored three was computed by adding the 1 and 2 that were 

lightly colored in the previous example.) 

 

Here is the code to implement this slight change, just substitute this line for the for loop 

with k in the previous code: 

                         
  if ( j >= denominations[i]) 
         table[i][j] = table[i-1][j] + table[i][j - 

denominations[k]]; 

  else 

         table[i][j] = table[i-1][j] 

                 

 

Example #4: Longest Common Subsequence 

The problem is to find the longest common subsequence in two given strings. A 

subsequence of a string is simply some subset of the letters in the whole string in the 

order they appear in the string. In order to denote a subsequence, you could simply 

denote each array index of the string you wanted to include in the subsequence. For 

example, given the string "GOODMORNING", the subsequence that corresponds to 

array indexes 1, 3, 5,  and 6 is "ODOR." 

 

Here is the basic idea behind solving the problem: 

 



If the last characters of both strings s1 and s2 match, then the LCS will be one plus the 

LCS of both of the strings with their last characters removed. 

 

If the initial characters of both strings do NOT match, then the LCS will be one of two 

options: 

 

1) The LCS of x and y without its last character. 

2) The LCS of y and x without its last character. 

 

Thus, in this case we will simply take the maximum of these two values.  Also, we could 

just as easily have compared the first two characters of x and y and used a similar 

technique. 

 

Let's examine the code for both the recursive solution to LCS and the dynamic 

programming solution: 

 
// Arup Guha 

// 3/2/05 

// The method below solves the longest common subsequence 

problem recursively. 

import java.io.*; 

 

public class LCS { 

 

  public static int lcsrec(String x, String y) { 

 

    // Base case empty string. 

    if (x.length() == 0 || y.length() == 0) return 0;  

    int len1 = x.length(); 

    int len2 = y.length(); 

   

    // Solve the problem recursively. 

 

    // Corresponding last characters match. 

    if (x.charAt(len1-1) == y.charAt(len2-1)) 

        return 1+lcsrec(x.substring(0, x.length()-1), 

    y.substring(0,y.length()-1)); 

 

    // Corresponding characters do not match. 

    else  

        return max(lcsrec(x, y.substring(0, y.length()-1)),   

                   lcsrec(x.substring(0,x.length()-1), y)); 

 

  } 

} 

 



Now, our goal will be to take this recursive solution and build a dynamic programming 

solution. The key here is to notice that the heart of each recursive call is the pair of 

indexes, telling us which prefix string we are considering. In some sense, we can build 

the answer to "longer" LCS questions based on the answers to smaller LCS questions. 

This can be seen trace through the recursion at the very last few steps.  

 

If we make the recursive call on the strings RACECAR and CREAM, once we have the 

answers to the recursive calls for inputs RACECAR and CREA and the inputs RACECA 

and CREAM, we can use those two answers and immediately take the maximum of the 

two to solve our problem! 

 

Thus, think of storing the answers to these recursive calls in a table, such as this: 

 

 R A C E C A R 

C        

R        

E        

A   XXX     

M        

 

In this chart for example, the slot with the XXX will store an integer that represents the 

longest common subsequence of CREA and RAC. (In this case 2.) 

 

Now, let's think about building this table. First we will initialize the first row and column: 

 

 R A C E C A R 

C 0 0 1 1 1 1 1 

R 1       

E 1       

A 1       

M 1       

 

 

Basically, we search for the first letter in the other string, when we get there, we put a 1, 

and all other values subsequent to that on the row or column are also one. This 

corresponds to the base case in the recursive code. 

 

Now, we simply fill out the chart according to the recursive rule: 

 

1) Check to see if the "last" characters match. If so, delete this and take the LCS of what's 

left and add 1 to it. 

 

2) If not, then we try to possibilities, and take the maximum of those two possibilities. 

(These possibilities are simply taking the LCS of the whole first word and the second 

work minus the last letter, and vice versa.) 

 



Here is the chart: 

 

 

 R A C E C A R 

C 0 0 1 1 1 1 1 

R 1 1 1 1 1 1 2 

E 1 1 1 2 2 2 2 

A 1 2 2 2 2 3 3 

M 1 2 2 2 2 3 3 

 

Now, let's use this to develop the dynamic programming code. 

 

Homework Problems from acm.uva.es site 

10131, 10069, 10154, 116, 10003, 10261, 10271, 10201 

 

Attached Problems 

2004 Greater New York Regional – Lenny's Lucky Lotto Lists 

2004 South American Regional – Land Division Tax 
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