
Bitwise Operators

We commonly use the binary operators && and ||, which take the

logical and and logical or of two boolean expressions.

Since boolean logic can work with single bits, C provides operators

that work on individual bits within a variable.

As we learned earlier in the semester, if we store an int in binary

with the value 47, its last eight binary bits are as follows:

00101111

Similarly, 72 in binary is

01001000.

Bitwise operators would take each corresponding bit in the two

input numbers and calculate the output of the same operation on

each set of bits.

For example, a bitwise AND is represented with a single ampersand

sign: &. This operation is carried out by taking the and of two bits.

If both bits are one, the answer is one. Otherwise, the answer is zero.

Here is the bitwise and operation on 47 and 72:

 0 0 1 0 1 1 1 1

& 0 1 0 0 1 0 0 0

 0 0 0 0 1 0 0 0 (which has a value of 8.)

Thus, the following code segment has the output 8:

int x = 47, y = 72;

int z = x & y;

printf(“%d”, z);

Here is a chart of the other bitwise operators:

Function Operator Meaning

and & 1&1 = 1, rest = 0

or | 0 | 0 = 0, rest = 1

xor ^ 1 ^ 0 = 0 ^ 1 = 1

0 ^ 0 = 1 ^ 1 = 0

Not (unary operator) ~ ~0 = 1, ~1 = 0

Now, let’s calculate the other bitwise operations between 47 and 72:

 0 0 1 0 1 1 1 1

| 0 1 0 0 1 0 0 0

 0 1 1 0 1 1 1 1 (which has a value of 111.)

 0 0 1 0 1 1 1 1

^ 0 1 0 0 1 0 0 0

 0 1 1 0 0 1 1 1 (which has a value of 103.)

Two’s Complement

In order to understand exactly how the bitwise not operator works

on integers, we must understand exactly how a signed integer is

stored inside the computer. Regular binary notation, which we

learned earlier, is used to store unsigned integers (these don’t allow

for negative values and are used less frequently than regular ints).

Two’s Complement is used to store regular ints. The storage scheme

is almost identical to regular binary, except for the meaning of the

most significant bit. An int is stored using 32 bits. For an unsigned

number, each of these bits are place-holders with value 231, 230, 229,

…, 22, 21, and 20. Essentially, if the bit at location i is 1, then we

contribute 2i to the value of the number. (If it’s 0, nothing changes.)

In two’s complement, we only change the most significant bit to

mean -231.

For example, if all of the bits were 1 in a regular int:

11111111 11111111 11111111 11111111

Then, the value of this number would be:

-231 + 230 + 229 + 228 + … + 22 + 21 + 20 = -1.

From here, we can get to other negative values by turning some of

the bits off. For example, it’s fairly easy to see that -5 would be

represented as follows:

11111111 11111111 11111111 11111011

Taking into account two’s complement, we can calculate the effect of

the bitwise not operator.

Consider calculating ~x, where x = 47, from our previous example.

Here is all 32 bits of x:

00000000 00000000 00000000 00101111

Flipping each bit, we get:

11111111 11111111 11111111 11010000

Using a bit of logic, we can see that if we were to have all 1’s the

value would be -1. But, now that we’ve turned off the bits that add

up to 47, our new value will be -48.

In essence, we see that in the typical case, when x is positive, ~x is

equal to –x-1.

Hopefully you can see that if x is negative, then ~x is ALSO –x-1.

(Thus, ~~x always equals x, as you might imagine.)

Left and Right Shift Operators

The left-shift operator is <<.

The right-shift operator is >>.

When we left-shift a value, we must specify how many bits to left-

shift it. What a left-shift does is move each bit in the number to the

left a certain number of places. In essence, so long as there is no

overflow, a left-shift of one bit multiplies a number by two (since

each bit will be worth twice as much).

It follows that a left shift of 2 bits multiplies a number by 4 and a

left shift of 3 bits multiples a number by 8. In general, a left-shift of

k bits multiplies a number by 2k.

Using bitwise operators to iterate through subsets

Imagine solving the following problem with brute force:

Given an array of values, such as {9, 3, 4, 5, 12}, does there exist a

subset of values in the array that adds up to a target, say 22?

Our goal would be simply to try EACH possible subset of the array,

add the values and see if we get the target. If we think about binary

and look at the binary values from 0 to 31, we have:

00000 01000 10000 11000

00001 01001 10001 11001

00010 01010 10010 11010

00011 01011 10011 11011

00100 01100 10100 11100

00101 01101 10101 11101

00110 01110 10110 11110

00111 01111 10111 11111

If we assume that 0 means, “don’t put this number in the set” and 1

means, “put this number in the set, then these 32 listings represent

all possible subsets of a set of 5 values.

Thus, our idea is as follows:

Loop from 0 to 31, for each value and calculate the sum of the

corresponding subset. For example, since 13 is 01101, this means

that the subset we want to add up is array[3], array[2] and array[0].

We are using the most significant bit in the number to correspond to

the last array slot and the least significant bit in the number to

correspond to index 0 in the array. In this example, when we are

considering 13, the values we add are 9, 4 and 5 to obtain 18.

Here is the code that does this:

int i, j;

 int n = 5;

 int array[] = {9, 3, 4, 5, 12};

 int target = 22;

 for (i=0; i < (1 << n); i++) {

 int sum = 0;

 for (j=0; j < n; j++)

 if ((i & (1 << j)) != 0)

 sum += array[j];

 if (sum == target)

 printf(“Can add up to the target!\n”);

 }

Notes:

1) Remember that a left-shift of n bits multiplies by 2n, so the value

of 1 << n for this example is 25 = 32, as desired.

2) The j loop is going through each array element, trying to decide

whether or not to add it. The value 1 << j has only one bit set to 1,

it’s the bit at location j.

3) If we do a bitwise and with a number of the form 000…001000…,

then our answer will either be all 0s OR it will be the number itself.

Basically, all of the 0s cancel out the other 31 bits. The one 1 isolates

that particular bit, which is exactly what we want.

