Problem I: Zigzag Subsequence

Filename: zigzag2 *Timelimit:* 20 seconds

Zigzag sequences are a curious kind of integer sequence. They are sequences of **at least length 3** that have the following form every three consecutive integers $a_{i,a_{i+1},a_{i+2}}$:

 $a_i < a_{i+1} > a_{i+2}$ or $a_i > a_{i+1} < a_{i+2}$

Examples of zigzag sequences are 14, 17, 3, 19 and 1, 7, 1, 97, 2. Examples of sequences that are not zigzag sequences are 1, 17, 29, 17, 1 and 1, 9, 9.

Given a sequence, you are to find how many subsequences form a zigzag sequence. A subsequence is formed by removing some number, possibly zero, of integers from the sequence. A subsequence is considered different if the ith location is removed in one sequence but not the other.

Input

The first line contains a positive integer s ($s \le 40$), representing the number of sequences to consider.

The next r lines contains a positive integer n, ($3 \le n \le 10^5$) representing the length of the original sequence.

The following line contains **n** integers. Each integer \mathbf{a}_i (-10⁹ ≤ \mathbf{a}_i ≤ 10⁹), represents the \mathbf{i}^{th} integer in the sequence.

Output

For each sequence, output a single integer on a line by itself representing the number of subsequences that are also zigzag sequences. Since this number can be quite large, output this value modulo 10^9 +7.

Samples

Input	Output
3 3 -7 8 -8 4 1 4 1 4 5 1 4 1 4 1	1 3 8